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ABSTRACT OF DISSERTATION 
 
 
 

PRECLINICAL AND CLINICAL DEVELOPMENT OF THE LIPOPHILIC 
CAMPTOTHECIN ANALOGUE AR-67 

 

AR-67 is a lipophilic third generation camptothecin analogue, currently under early stage 
clinical trials. It acts by targeting Topoisomerase 1 (Top1), a nuclear enzyme essential 
for DNA replication and transcription and is present in two forms, the pharmacologically 
active lipophilic lactone and the charged carboxylate. In oncology patients participating 
in a phase I clinical trial, AR-67 lactone was the predominant species in plasma. 
Similarly to other camptothecins, the identified dose-limiting toxicities for AR-67 were 
neutropenia, thrombocytopenia and fatigue. In addition, in vitro metabolism studies 
indicated AR-67 lactone as a substrate for CYP3A4/5 as well as the UGT1A7 and 
UGT1A8 enzymes localizing in the liver and the gut.  
Numerous studies have demonstrated the over-expression of transporters in certain 
tumor types. Here, the effect of interactions between AR-67 and efflux or uptake 
transporters on the antitumor efficacy of AR-67 in vitro was studied. We showed that 
BCRP and MDR1 overexpression confers resistance to AR-67.  
Moreover, we demonstrated the therapeutic superiority of protracted dosing over more 
intense dosing regimens of AR-67 using xenografts models. Our studies indicated the 
schedule-dependent expression of Top1 and the preferential partitioning of AR-67 in the 
tumor tissue. We reason that these are factors that need to be taken into consideration 
when designing dosing schedules aiming to maximize efficacy.  
As most cytotoxic drugs, AR-67 has a narrow therapeutic window. Thus, it is essential to 
identify the variables influencing exposure to this camptothecin analogue. A thorough 
compartmental pharmacokinetic analysis was performed on the patient data obtained in 
a phase 1 clinical trial on AR-67. Moreover, sources of intersubject variability associated 
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with obtaining pharmacokinetic parameter estimates were identified and a population 
covariate pharmacokinetic model was developed.  
In conclusion, the drug development of AR-67 is a work in process. Findings presented 
above provide an insight on the factors contributing to its efficacy and toxicity when 
given to cancer patients. 

 
KEYWORDS: AR-67, Camptothecin, Transporter, Dosing Schedule, Population 
Pharmacokinetics 
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1. Chapter 1: Introduction. 

1.1 Camptothecins. 

20(S)-Camptothecin (CPT) (Figure 1-1, A) is the first alkaloid, among a number of 

natural alkaloids, extracted in the 1960s from the stem wood of the tree Camptotheca 

acuminate, Nyssaceae that showed potent anticancer activity [1, 2]. Since then, semi-

synthetic camptothecin analogues were synthesized and tested in a variety of solid 

tumors and leukemias in vitro and in vivo producing encouraging results. The 

identification of the enzyme target of camptothecins, Topoisomerase 1 (Top1), the 

elucidation of the mechanism of action and the systematic study of the physicochemical 

properties of camptothecins contributed significantly to the successful development of 

camptothecin analogues with promising response profiles in the clinic. 
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Figure 1-1. Alkaloids isolated from the Camptotheca acuminate, Nyssaceae. 

Chemical structures of 20(S)-Camptothecin (CPT) (A) and 10-
hydroxycamptothecin (B). 
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1.2 Mechanism of Action. 

The increased susceptibility of S-phase specific cells to camptothecin exposure is 

attributed to the camptothecin mechanism of action. Studies [3-5] have shown that 

camptothecins target the nuclear enzyme Top1 which is responsible for the relaxation of 

supercoiled DNA during replication and transcription. Camptothecins stabilize the 

reversible complex that is formed between the DNA and Top1 by mimicking a DNA base 

pair and intercalating into the DNA. When the CPT-DNA-Top1 complex collides with the 

replication fork (replication) or RNA polymerase (transcription), the DNA religation 

process cannot be completed and double strand DNA breaks are formed [6, 7]. DNA 

repair mechanisms cannot balance the extensive drug-induced DNA damage and cells 

undergo apoptosis [8].  

1.3 Resistance Mechanisms to Camptothecin Treatment. 

Cancerous cells develop resistance to camptothecin analogues typically by decreasing 

their Top1 protein content [9, 10]. The nuclear enzyme is being sequestered from the 

nucleus and undergoes an ubiquitin-mediated degradation in the cytotoplasm [11]. 

Interestingly, the Top1 protein levels return to basal levels in surviving cells when the 

drug is removed [9, 10]. Point mutations in the enzyme that prevent Top1 from 

interacting with the anticancer agent have resulted in resistance to CPT as well [12-14]. 

Finally, modulating the expression of transporters that are facilitating the intake or efflux 

of camptothecin analogues could lead to drug resistance [15].  

1.4 Lactone-Carboxylate Interconversion. 

Camptothecins are unique among anticancer agents for their physicochemical 

properties. They are typically present in biological matrices in two forms, the lipophilic 

lactone and the negatively charged carboxylate (Figure 1-2). The lactone form gives rise 

to the carboxylate by reversible hydrolysis of the α-hydroxy-δ-lactone pharmacophore 
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(ring E). The two major factors that have an impact on the equilibrium between lactone 

and carboxylate are protein binding and pH. Studies have indicated that albumin shows 

a higher affinity for the carboxylate than the lactone form which led to extensive lactone 

conversion to carboxylate [16, 17]. Additionally, acidic pH conditions were found to favor 

the formation of lactone by lactonization of the E-ring [18, 19].  
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Figure 1-2. pH-dependent lactone-carboxylate interconversion. 
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1.5 Structure-Activity Relationships. 

Camptothecin basic structure involves a 5-membered ring structure with a chiral center 

on position 20, presented on Figure 1-3. Structure-activity relationships have underlined 

the importance of the 20(S)-hydroxyl group for interaction with the Top1 active site and 

more specifically for the formation of a hydrogen bond with the amino acid Asp533 [3, 5, 

7]. Contrary, the 20(R)-hydroxyl stereoisomer was found inactive while attempts to 

substitute the hydroxyl group with hydrogen or ethyl resulted in inactive analogues [5, 

20]. Moreover, the planarity of the 5-membered ring system and the pyridine moiety in 

the D-ring are essential for antitumor activity [7, 21]. Holden et al and others showed that 

introduction of groups in positions 7, 10 and 11 led to more stable Top1-DNA-CPT 

complexes which increased the potential for colliding with the replication or transcription 

machinery [22-25]. Additionally, in vitro studies have indicated that substitution on 

positions 7, 9 and 10 are associated with decrease in the interaction of the carboxylate 

form of camptothecin analogues with albumin [16, 26, 27] and, therefore, increasing 

exposure to the pharmacologically active lactone form. Finally, substitution on carbon 12 

prevented the analogue from interacting with Top1 [28].    

Between the two camptothecin forms, the lipophilic lactone, through the α-hydroxy-δ-

lactone pharmacophore (ring-E), has been traditionally considered to mediate the 

camptothecin cytotoxic activity [3]. However, crystalography studies have indicated that 

both the carboxylate and lactone form have the potential of interacting with Top1 [29]. 
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Figure 1-3. Camptothecin five-member ring structure. 
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1.6 2nd and 3rd generation Camptothecin Analogues. 

In line with studies linking camptothecin cytotoxic activity with protein binding and 

lipophilicity, synthetic efforts aimed at producing derivatives with increased lactone 

stability which would lead to increased exposure to the pharmacologically active form 

(Figure 1-2). Initial efforts focused on synthesizing camptothecin analogues with low 

carboxylate affinity to human albumin. These 2nd generation water-soluble derivatives 

showed increased stability of the lactone pharmacophore in biological matrices [17] and 

were deemed superior to previously studied camptothecin derivatives. Two of those 

camptothecin analogues that showed significant activity preclinically as well as in the 

clinic are the FDA approved topotecan and irinotecan (Figure 1-4) [30, 31]. Additional 

water-insoluble 9-substituted (Figure 1-5) and water-soluble hexacyclic camptothecin 

analogues (Figure 1-6) are currently under early-stage development [32, 33].  
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Figure 1-4. Second generation FDA approved and water-soluble camptothecin 
analogues. 

Chemical structure of topotecan (TPT, Hycamtin, NSC 609669, SK&F 104864) (A), 
irinotecan (IRN, CPT-11, Camptosar) (B) and SN-38 (C), the active metabolite of 
irinotecan. 
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Figure 1-5. Second generation water-insoluble amino- and nitro-camptothecin 
analogues. 

Chemical structure of 9-aminocamptothecin (9-AC, IDEC-132) (A) and 9-
nitrocamptothecin (9-NC, Rubitecan, Orathecin) (B). 
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Figure 1-6. Second generation, water soluble, hexacyclic camptothecin analogues. 

Chemical structure of belotecan (CKD-602, Camtobell) (A), lurtotecan (GI147211, 
GG211) (B) and exatecan (DX-8951) (C). 
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The 3rd generation camptothecin analogues (Figure 1-7) were characterized by low 

carboxylate hydrolysis rates and increased lipophilicity, which resulted in further 

stabilization of the lactone moiety potentially by extensive partitioning to lipid bilayers 

[32, 33]. In addition, replacement of the six- by a seven-membered α-hydroxy lactone 

pharmacophore gave rise to a new group of camptothecin derivatives, the 

homocamptothecins (Figure 1-7, D), with promising cytotoxic activity and reinforced 

lactone stability [32, 34-36]. 

Finally, substitution on position 7 (Figure 1-7, B, C and D) was explored further to 

achieve higher lipophilicity and antitumor activity. Those synthetic pathways produced 

analogues such as the silatecans [37, 38]. The 7-silyl group improved the lipophilic 

character of those analogues and further facilitated the interaction of silatecans with 

Top1 potentially by allowing the analogues to freely diffuse through membranes and 

access their enzyme-target [38]. 
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Figure 1-7. Third generation camptothecin analogues. 

Chemical structure of gimatecan (ST14811) (A), karenitecin (B), AR-67 (DB-67) (C) 
and DB-91 (D). 

 

 

 

 

 

 



www.manaraa.com
14 

 

1.7 Camptothecin Analogues in the Clinical Setting. 

During one of the early clinical trials testing the activity and safety of CPT [39], the drug 

was administered in the carboxylate form due to solubility issues. Low response rates in 

combination with significant toxicity in the form of hemorrhagic cystitis were reported. As 

a result, the development of camptothecins was dropped and efforts were focused on 

the development of taxanes.  

However, the interest in camptothecins was revived after a better understanding was 

obtained regarding its enzyme-target, Top1, the interaction taking place between Top1 

and camptothecins and the factors that play a role on the equilibrium between the toxic 

carboxylate and the pharmacologically active lipophilic lactone form.  

Two camptothecin analogues have emerged as promising candidates for clinical use 

after extensive in vitro and in vivo studies on their antitumor activity profile, topotecan 

and irinotecan. In addition to their very distinct pharmacokinetic properties, topotecan 

and irinotecan displayed noteworthy activity in the clinical setting.  

1.7.1 Topotecan. 

Topotecan (Figure 1-4, A) is a 2nd generation semisynthetic and water-soluble 

camptothecin that has received FDA approval for the treatment of recurrent cervical 

cancer in combination with cisplatin and for the treatment of ovarian and small-cell lung 

cancer after failure of first-line therapy [40, 41]. When compared to 20(S)-camptothecin, 

topotecan showed increased lactone stability in vivo and the lactone form accounted for 

about 25 % of the total drug in cancer patients [42, 43]. The kinetics of topotecan 

appeared to be linear over the dose range tested in clinical studies and its half-life was 

1-2 hours [43, 44]. Topotecan was primarily eliminated through the kidneys as 30 % of 

the administered dose was quantified in the urine [44, 45]. The significance of renal 
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elimination was underlined in population analysis studies where indicators of renal 

function such as serum creatinine (SrCr), creatinine clearance (CRCL) or glomerular 

filtration rate (GFR) accounted for a large amount of intersubject variability 

accompanying drug clearance estimates [46-50] (Table 1-1). More importantly, dose 

adjustments were found necessary for patients with renal impairment to avoid life-

threatening toxicities, primarily hematological such as neutropenia and 

thrombocytopenia [51, 52]. 

1.7.2 Irinotecan. 

Irinotecan (Figure 1-4, B) belongs to the same group of camptothecin analogues as 

topotecan. The FDA has granted irinotecan approval for the treatment of metastatic 

carcinoma of the colon or rectum that is considered recurred or has progressed following 

5-FU-based therapy [53]. Similarly to topotecan, the lactone to total drug ratio of 

irinotecan and SN-38, its active form in vivo, is improved compared to the first 

camptothecin analogues synthesized [54, 55], but its pharmacokinetic and toxicity profile 

are subtly different than the ones of topotecan.  

Irinotecan is a prodrug that is biotransformed to its active form, SN-38, by 

carboxylesterases in the blood and the liver [56]. Irinotecan and SN-38 are further 

metabolized by CYP3A4 and UGT1A1/7 into products that are detected in the bile and 

feces (64 % of the dose) and to a much lesser extent in the urine [57, 58]. As a result of 

the enterohepatic circulation SN-38 undergoes [59, 60], patients treated with irinotecan 

experience diarrhea that often requires hospitalization. Half-lives for irinotecan and SN-

38 have been estimated to be 14.6 h and 28.5 h, respectively [57] and SN-38 protein 

binding was 94.7 % [61]. Consistent with the involvement of the liver in the elimination of 

irinotecan and the solid exposure-toxicity relationship established for irinotecan/SN-38 

with the development of population pharmacokinetic models (Table 1-1), patients with 
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liver impairment and patients UGT1A1*28 homozygous receive reduced doses of 

irinotecan and are being monitored closely for hematological and gastrointestinal toxicity 

[61-63]. Finally, a number of gastrointestinal and liver transporters have been implicated 

in the complex pathways of absorption, distribution and elimination for irinotecan and 

SN-38. The uptake transporters OATP1B1 and OATP1B3 facilitate the transfer of 

irinotecan and SN-38 into the hepatocytes [64, 65]. The glucuronides and other products 

of metabolic pathways are being effluxed into the bile by BCRP, MDR1 and MRP2 [64, 

66, 67]. In the gut, irinotecan has the potential of being re-absorpted. It is expected that 

the BCRP and MDR1 efflux transporters localized on the apical side of the enterocytes 

would limit its oral bioavailability and potentially exacerbate gastrointestinal toxicity [66, 

67]. Therefore, recent studies on irinotecan pharmacogenetics have focused on 

identifying sources of genetic variation in metabolic enzymes and transporters and on 

exploring correlations between polymorphisms of metabolic enzyme and transporter 

genes with toxicity [68, 69]. Naturally, the clinical relevance of those findings needs to be 

studied further.  
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Table 1-1. Topotecan and irinotecan population pharmacokinetic models. 

Camptotheci
n, Species Matrix 

No 
Patient

s 

Population 
pharmacokinetic 

parameter 
Covariate Reference 

 
Topotecan, 
total drug Plasma 82 CL HT, WT, sex, 

SrCr [49] 

Topotecan, 
total drug Plasma 31 CL CRCL/SrCr+AG

E* [50] 

Topotecan, 
total drug Plasma 245 CL CRCL, PS, WT [48] 

Topotecan, 
total drug Plasma 190 

CL PS, CRCL 
[47] 

V WT 

Topotecan, 
lactone Plasma 162 

CL 

GFR, AGE, 
TRIAL#, 

CONCOMINANT 
MEDICATION [46] 

V 

GFR, AGE, 
TRIAL#, 

CONCOMINANT 
MEDICATION 

 
Irinotecan, 
lactone and 
total drug 

Plasma 70 CL BSA [70] 

Irinotecan, 
total drug Plasma 

78 

CL AGE, PS 

[71] 

V WT 
SN38, 

total drug Plasma 
CL Tbil, sex 
V Tbil, PS 

SN38G, 
total drug Plasma 

CL PS 
V WT 

Irinotecan, 
total drug Plasma 109 CL BSA [72] 

 
Pharmacokinetic parameters, CL: population predicted clearance, V: population 

predicted volume of distribution 
Patient Covariates, BSA: Body Surface Area, PS: Performance Status, WT: Weight, 

Tbil: serum total bilirubin, HT: Height, SrCr: Serun Creatinine, CRCL: Creatinine 
Clearance, GFR: Glomerular Filtration Rate, TRAIL#: phase I clinical trial number 

SN-38G: SN-38 glucuronide 
*Two models were proposed by the authors: CRCL (model 1) and SrCr and AGE 

(model 2) 
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1.8 AR-67 Preclinical Studies. 

AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin, DB-67) (Figure 1-7, B) is a 3rd 

generation lipophilic camptothecin analogue that belongs to the family of silatecans 

(Figure 1-7) [37]. In vitro structure-activity studies have showed that the AR-67 fortified 

lipophilic properties should be attributed to the silyl group in position 7 while substitutions 

in positions 7 and 10 prevent the AR-67 carboxylate from interacting with albumin [38, 

73]. It was originally hypothesized that the increased exposure to AR-67 lactone 

observed in vitro was the result of the lipophilic lactone moiety partitioning into 

erythrocytes and other membranous structures found in the bloodstream that could 

serve as a drug depot [74]. However, recent studies in animals have indicated that the 

carboxylate form is being eliminated at a higher rate than the lactone form [75]. 

Therefore, it is suggested that the lactone appears to be the predominant species in vivo 

and exhibits, essentially, high “apparent” blood stability [75]. 

The antitumor activity of AR-67 was evaluated in preclinical models both in vitro and in 

vivo. More specifically, AR-67 was tested against camptothecin and SN-38 for 

cytotoxicity using an array of established cancer cell lines (leukemia, melanoma, lung, 

colon, central nervous system, renal, prostate and breast cancer) [74]. Although, the 

lipophilic camptothecin analogue was more potent than 20(S)-camptothecin, the 

estimated GI50s for AR-67 were 10-fold lower than the respective ones for SN-38 [74]. 

Moreover, the antitumor activity of AR-67 was studied using colon cancer and glioma 

xenografts. AR-67 was proven to be more effective than irinotecan in decreasing relapse 

rates in animals that had resected metastatic liver tumors [76]. Additionally, U87 glioma 

xenografts showed high response rates to AR-67 treatment when compared to drug-

vehicle treated animals. AR-67 treatment resulted in tumor growth inhibition and 

increase in survival while no toxicity was observed [77].      
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1.9 AR-67 Phase I Clinical Trial. 

Preclinical studies demonstrating the potent antitumor activity of AR-67 were followed by 

a successful phase I clinical trial [78]. Patients with refractory or metastatic solid 

malignancies received AR-67 lactone as an 1-hour infusion daily for 5 days on a 21-day 

cycle and were monitored for safety and toxicity. The maximum tolerated dose (MTD) 

was estimated to be 7.5 mg/m2/day. This dose administered daily for 5 days every 21 

days is recommended for future phase II studies. Consistent with the toxicity profile of 

camptothecins [41], thrombocytopenia and febrile neutropenia were identified as dose 

limiting toxicities (DLT) in addition to fatigue. Changes in Absolute Neutrophil Counts 

(ANC) and Platelets (PLT) were used to establish correlations between AR-67 dose or 

exposure and hematological toxicity. Notably, no diarrhea was reported by any of the 

patients. This finding is in line with in vitro metabolism studies indicating AR-67 lactone 

as a good substrate for UGT1A7 and UGT1A8, enzymes localizing selectively in the 

gastrointestinal lumen [79]. Contrary to SN-38, AR-67 appeared to be a poor substrate 

for UGT1A1 [79] limiting the potential for life-threatening gastrointestinal toxicity in 

patients with the UGT1A1 7/7 genotype (homozygous for UGT1A1*28 allele) [60, 80]. 

Similarly to preclinical studies, AR-67 was present primarily in the lactone form in the 

blood. More specifically, the AR-67 lactone/total AUC ratio was estimated to be 85.7 % 

for patients in the MTD cohort contrary to the respective irinotecan and topotecan ratios 

ranging from 30 to 76 % [58].  As a result, exposure to the pharmacologically active 

lactone was higher with AR-67 than with the FDA-approved camptothecins irinotecan 

and topotecan. Notably, AR-67 administration resulted in clinical responses in patients 

with lung and duodenal cancer. This is a promising finding as irinotecan and topotecan 

have exhibited documented activity against gastrointestinal and lung cancer, 

respectively [40, 41, 53]. Finally, AR-67 followed linear kinetics over the administered 

dose range (1.2-12.4 mg/m2/kg) and the estimated plasma half-life (noncompartmental 
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analysis) was ~1.5 h [78]. Additional studies on days 1 and 4 of cycle 1 showed that AR-

67 is mostly protein bound. More specifically, overall protein binding was 95.4%±1.8 for 

lactone vs. 89.7%±3.2 for carboxylate [81].    

1.10 Transporters. 

1.10.1 ATP-Binding Cassette Multidrug Transporters. 

The ATP-Binding Cassette (ABC) transporters are proteins responsible for the transport 

of chemical entities through lipid bilayers. They are typically expressed in the outer 

membrane of the eukaryotic cells as well as in membranes of organelles in the 

cytoplasm, and they require ATP hydrolysis to function. Breast Cancer Resistance 

Protein (BCRP) and Multidrug Reistance-associate Protein-1 (MDR1) belong to the ABC 

superfamily of transporter proteins [67].  

1.10.1.1 BCRP. 

ATP-Binding Cassette Subfamily G member 2 (ABCG2 gene) was originally found to be 

overexpressed in the MCF-7 breast cancer cell line and was associated with resistance 

to mitoxantrone, doxorubicin, and daunorubicin [82, 83]. Due to the type of tissue of 

origin, it was named Breast Cancer Resistance Protein (BCRP). It is a 72 kDa 

transporter that is believed to comprise of 2 or 4 dimers [84] each of which is comprised 

of 3 transmembrane (TM) segments and a Nucleotide Binding Domain (NBD) [67]. 

BCRP is expressed in normal tissues such as the placenta, adrenal glands, liver (bile 

ductules), blood-brain barrier, lung, prostate and gastrointestinal tract [85] and it 

facilitates the transfer of endogenous compounds such as flavonoids, aflatoxin A, drug 

and metabolite conjugates and porphyrins through membranes [67]. Moreover, 

anticancer agents, tyrosine kinase inhibitors, antiviral drugs and antibiotics have been 

reported to undergo BCRP-facilitated transport [67]. Depending on its localization, this 
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efflux transporter can protect the fetus or the brain from the toxic effects of xenobiotics 

[86] or mediate the transport of xenobiotics into the milk [87].   

1.10.1.2 MDR1. 

Multidrug Resistance-associated Protein 1 (MDR1, P-glycoprotein, P-gp) is a 170-kDa 

glycoprotein encoded by the MDR1/ABCC1 gene. It is a single polypeptide with 12 

transmembrane (TM) domains and 2 nucleotide binding domains (NBD). Although 

originally cloned and extensively studied in cancer cells, MDR1 is expressed in the 

apical site of epithelial cells in the blood-brain barrier, gastrointestinal tract (small and 

large intestine), placenta, kidney (proximal tubule) and liver (bile ductules) [88-90] 

serving a protective/detoxifying role [67]. MDR1 substrates are typically amphiphatic, 

lipid-soluble compounds, with aromatic rings and high molecular weights (> 300) [67]. 

Steroid hormones, lipids (phospholipids), peptides and small cytokines are some of the 

most common endogenous MDR1 substrates. Xenobiotics readily transported by MDR1 

include, but are not limited to, anticancer agents, HIV-protease inhibitors, 

antiarrhythmics, immunosuppressive agents, calcium channel blockers, tyrosine kinase 

inhibitors and cardiac glycosides.  

1.10.2 Organic Anion Transporting Polypetides. 

Organic Anion Transporting Polypeptides (OATPs) [65, 91] are expressed in multiple 

tissues mediating the infflux of amphipathic endogenous and exogenous compounds. 

They are sodium, ATP-independent transporters coded by the solute carrier gene SLC. 

The human OATP family comprises of 11 members: OATP1A2, 1B1, 1B3, 1C1, 2A1, 

2B1, 3A1, 4A1, 4C1, 5A1 and 6A1 [65]. All members share a similar structure that 

includes 12 TM domains. Notably, SLCO1A6 [92, 93] (gene symbol SLC21A6, protein 

symbol LST-1, OATP-C, OATP2, OATP1B1) and SLCO1A8 [94, 95] (gene symbol 

SLC21A8, protein symbol LST-2, OATP8, OATP1B3) genes are expressed strictly in the 



www.manaraa.com
22 

 

basolateral membrane (sinusoidal membrane) of human hepatocytes and their protein 

products share a broad spectrum of overlapping substrates. They facilitate the uptake of 

substrates from the portal blood to the hepatocytes and contribute to the vectorial 

transport of compounds from the blood to the bile. OATP substrates are anions with 

molecular weights higher than 300 kDa. OATP1B1 has been reported to transport 

conjugated and unconjugated bilirubin, bile acids, conjugated steroids, eicosanoids and 

thyroid hormones [65, 96]. Xenobiotics identified as OATP1B1 substrates include statins, 

methotrexate, SN-38, antibiotics and angiotensin II receptor antagonists [96]. Although 

OATP1B3 showed an 80 % amino acid homology with OATP1B1, cholecystokinin, 

docetaxel and paclitaxel and digoxin are selectively being transported by OATP1B3 and 

not by OATP1B1 [65, 96].    

1.11 Multidrug Resistance and ABC-Transporters. 

Multidrug resistance (MDR) is a phenomenon in which cancer cells simultaneously 

become resistant to structurally unrelated chemotherapeutic agents when exposed to a 

single chemotherapeutic drug [97]. MDR can be intrinsic or acquired as a result of 

exposure to anticancer agents. MDR is commonly mediated through one or more 

transporters that are protein structures localizing in the cell membrane and can interfere 

with the cytotoxic profile of chemotherapeutic agents. For instance, increase in the 

expression level of an efflux transporter or decrease in the expression level of an uptake 

transporter at the site of action, namely the tumor tissue, could result in lower exposure 

and, therefore, resistance. Two transporters frequently associated with multi-drug 

resistance are BCRP and MDR1.  

1.11.1.1 MDR1 and BCRP Efflux Transporters. 

A number of studies have shown increased expression of the efflux transporter BCRP in 

both solid tumors and leukemias [85]. Ross et al [98] showed BCRP mRNA levels 



www.manaraa.com
23 

 

comparable to the ones quantified in the MCF-7 cell line in 33 % of the AML blasts in 

leukemic patients. Using immunohistochemistry and western blotting as a cross-

reference method, high BCRP expression was observed in the digestive tract, 

endometrium, lung and melanoma tumor tissue samples obtained from untreated 

patients in a study by Diestra et al [99]. High mRNA levels of the same efflux transporter 

were quantified in 22 % of lung tumor tissue patient samples [100]. Interestingly, work by 

Candeil et all suggested that the observed increase on the mRNA levels of BCRP can 

be drug-induced [101]. Similarly to BCRP, MDR1 over-expression has been reported in 

primitive hematopoietic progenitor cells [102] and in human tumor tissues derived from 

the adrenal gland, colon and renal carcinomas, the testis and the brain [88, 89]. 

Detectable levels of MDR1 have been identified in osteosarcomas, ovarian and small-

cell lung carcinomas, Ewing’s sarcoma and breast cancer [15]. Guerci et al were able to 

demonstrate 33 % complete response rates among MDR-1+ in MDS-AML patients 

against a complete response rate as high as 78 % among patients that did not express 

MDR-1 in their blasts [103]. Additionally, MDR1 was introduced as a predictor of 

outcome in acute myeloid leukemia patients by Leith et al [104]. Finally, BCRP and 

MDR1 expression have been studied concurrently or alone in leukemic patients in a 

number of studies that propose a prognostic role for these transporters [105-107].  

1.12 Chemosensitivity and the OATP1B3 Uptake Transporter. 

Recent studies reported increased mRNA expression of OATP1B3 in human lung tumor 

tissue when compared to normal lung tissue [108]. Hormone-dependent cancers have 

been associated with OATP1B3 overexpression. The SLCO1B3 gene was found highly 

expressed in prostate tumor tissue [109] while the protein expression of the transporter 

correlated with prognosis in breast cancer patients [110]. Interestingly, OATP1B3 
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overexpression has been reported in colorectal tumors [111-113] and a prognostic role 

in lower grade early stage colon cancer has been suggested for this transporter [112].  

Therefore, increased cellular expression of OATP1B3 could benefit patients that are 

being treated with anticancer agents selectively transported by OATP1B3. As preclinical 

studies have demonstrated the OATP1B3-mediated uptake of paclitaxel [114], the 

impact of OATP1B3 overexpression at the tumor on paclitaxel tumor pharmacokinetics 

and on response to drug treatment warrants further exploration. 
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2. Chapter 2: Specific Aims. 

2.1 Hypothesis 1. 

The MDR1 and BCRP efflux transporters expressed in the tumor tissue confer 

resistance to AR-67 lactone and overexpression of the uptake transporter OATP1B3 at 

the tumor site is associated with increased sensitivity to the cytotoxic effect of AR-67 

carboxylate in vitro.  

2.1.1 Specific Aim 1a. 

Validate the expression and function of the efflux MDR1 and BCRP and the uptake 

OATP1B1 and OATP1B3 transporters in in vitro models. 

2.1.2 Specific Aim 1b. 

Assess the MDR1 and BCRP-mediated efflux of AR-67 lactone and OATP1B1 and 

OATP1B3-mediated uptake of AR-67 carboxylate using the previously validated in vitro 

models.  

2.1.3 Specific Aim 1c. 

Evaluate the effect of the efflux transporters MDR1 and BCRP on the cytotoxic effect of 

AR-67 lactone and the effect of the uptake transporter OATP1B3 on the cytotoxic effect 

of AR-67 carboxylate using the previously validated in vitro models. 

The expression level of transporters in tumor tissue obtained from cancer patients has 

been studied in the past. Interestingly, BCRP and MDR1 as well as OATP1B3 have 

been found to be over-expressed in breast, prostate, colon and leukemia cancer types 

and to correlate with response in certain cases [88, 89, 97-110, 112, 113, 115]. 

Moreover, previous studies have demonstrated the interaction between camptothecin 

analogues and certain efflux or uptake transporters [116-121]. Additionally, in vivo 
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studies in animals showed that the efflux MDR1 and BCRP transporters interfere with 

the absorption of AR-67 when administered orally [122]. Against this background, we 

hypothesized that efflux and uptake transporters could have an impact on the toxicity 

profile of AR-67 in vitro. To investigate the impact these transporters could have on the 

toxicity profile of AR-67, cell lines overexpressing the transporters of interest were used. 

These cell lines were initially validated using prototype substrates (Specific Aim 1a). 

After the transporter-mediated transfer of AR-67 species was demonstrated (Specific 

Aim 1b), the MDR1 or BCRP conferred resistance and the OATP1B3-mediated 

sensitivity to AR-67 was evaluated (Specific Aim 1c). 
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2.2 Hypothesis 2. 

AR-67 protracted low-dose dosing schedules that do not result in depletion of Top1 at 

the tumor site are more efficacious than AR-67 given at the maximum tolerated dose. 

2.2.1 Specific Aim 1a. 

To determine the maximum tolerated dose of AR-67 in the xenografts model used, 

neutropenia was selected as an endpoint of AR-67-related toxicity. 

2.2.2 Specific Aim 1b. 

Demonstrate that low-dose protracted dosing of AR-67 is superior to more intense high-

dose dosing schedules in xenografts. 

2.2.3 Specific Aim 1c. 

Study AR-67 pharmacokinetics and Top1 kinetics at the tumor tissue after administration 

of AR-67 and evaluate Top1 as a biomarker of AR-67 biological activity. 

2.2.4 Specific Aim 1d. 

Study the toxicity profile of AR-67 given to cancer patients intermittently and test the 

feasibility of obtaining a tumor biopsy from cancer patients twice within 24 hours after 

drug administration. 

Camptothecins are S-phase specific anticancer agents. Therefore, they were anticipated 

to exert their maximum cytotoxic activity after continuous exposure [123, 124]. However, 

xenograft studies have demonstrated that protracted low-dose intermittent administration 

of camptothecins results in better response rates than more intense dosing schedules 

[125-128]. Moreover, Top1 expression appeared to decrease after exposure to 

camptothecin analogues in in vitro and in vivo studies [9, 10]. This established 

interaction between camptothecins and their enzyme-target is often characterized as a 

resistance mechanism of cells against this group of anticancer agents. Against this 
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background, we hypothesized that AR-67 antitumor activity can be enhanced when AR-

67 is given intermittently at low doses to allow the expression of Top1 at detectable 

levels at the site of action, the tumor. To determine the maximum tolerated dose of AR-

67 in our animal model, low white blood cells counts were used as an indicator of toxicity 

as hematological toxicity is typically observed after treatment with camptothecins [41, 78] 

(Specific Aim 1a). Following, the antitumor activity of AR-67 (Specific Aim 1b) and the 

kinetics of Top1 and AR-67 at the tumor tissue (Specific Aim 1c) were studied during 

AR-67 administration under differing dosing regimens. Finally, patients received AR-67 

at the MTD determined during the recently completed phase I clinical trial over 15 

instead of 5 days and were monitored for toxicity (Specific Aim 1d).   
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2.3 Hypothesis 3. 

Identifying sources of intersubject variability when describing the population 

pharmacokinetics of AR-67 would render drug administration to cancer patients safer.  

2.3.1 Specific Aim 1a. 

Develop a population pharmacokinetic model for AR-67 from pharmacokinetic data 

collected in the AR-67 phase I clinical trial. 

2.3.2 Specific Aim 1b. 

Perform covariate analysis to include sources of intersubject variability in the previously 

developed population pharmacokinetic model that would lead in more accurate AR-67 

population pharmacokinetic parameter estimates. 

2.3.3 Specific Aim 1c. 

Study the effect of smoking, tumor type, obesity and performance status on AR-67 

clearance and the AR-67 toxicity profile based on data collected during the AR-67 phase 

I clinical trial.   

2.3.4 Specific Aim 1d. 

Determine whether or not body-size measures account for the intersubject variability 

observed in the total body clearance estimates of AR-67 obtained using the previously 

developed population pharmacokinetic model. 

Study of the population pharmacokinetic and pharmacodynamic properties of anticancer 

agents, including camptothecins, has allowed clinicians to safely administer those 

agents to cancer patients [48, 50, 71, 72]. For instance, extensive studies on the 

pharmacokinetic properties of marketed camptothecins in different patient 

subpopulations have resulted in dose adjustments in patients with impaired kidney and 

liver function that receive topotecan and irinotecan, respectively to lower toxicity [52, 61, 
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63]. Therefore, the AR-67 population pharmacokinetics was studied using the non-linear 

mixed effects theory [129, 130] (Specific Aim 1a). Sources of intersubject variability were 

incorporated in the population pharmacokinetic model that was developed to increase its 

accuracy (Specific Aim 1b). As previous studies on AR-67 elimination have showed that 

it is primarily eliminated via metabolism [78, 79], factors that might interfere with the 

metabolic activity of enzymes in the liver and the gut were examined (Specific Aim 1c). 

Finally, the intersubject variability associated with AR-67 total body clearance was 

evaluated after normalization to body-size measures to decide whether or not flat or 

fixed dosing for AR-67 warrants further investigation (Specific Aim 1d).    
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3. Chapter 3: The effect of BCRP, MDR1 and OATP1B3 on the 

antitumor efficacy of the lipophilic camptothecin AR-67 in 

vitro 

 

3.1 Introduction. 

AR-67 is a third generation camptothecin analogue that belongs to the class of 7-

silylcamptothecins [37]. Similar to other camptothecins, AR-67 undergoes pH 

dependent, but reversible, hydrolysis of the lipophilic lactone to the hydrophilic 

carboxylate [38]. Although both lactone and carboxylate forms interact with DNA [29], 

they have different transport characteristics. The lactone passively diffuses into the cell 

and is considered the pharmacologically active form. In contrast, the negatively charged 

carboxylate requires transporter-mediated uptake, and it is often considered an inactive 

form. Preclinical studies have demonstrated the high lipophilicity and an “apparent” 

blood stability of the lactone form of AR-67 compared to FDA-approved camptothecins 

[74, 75].  

A common link between drug disposition and drug efficacy are transporter proteins, 

which could play a pivotal role in both the disposition and efficacy or toxicity of 

camptothecin analogs. As AR-67 exists in equilibrium between the hydrophobic lactone 

and hydrophilic carboxylate forms, both influx and efflux transporters could potentially 

play roles in both metabolic clearance and tumor sensitivity. Intracellular drug 

concentration will be influenced by the balance between cellular efflux, potentially 

resulting in resistance, and cellular uptake, potentially resulting in sensitivity. Metabolic 

clearance, on the other hand, may result from vectorial transport, where both influx and 

efflux transporters contribute to clearance in the same direction. 



www.manaraa.com
32 

 

The effect of transporters on the pharmacokinetic and pharmacodynamic profile of the 

FDA approved camptothecins topotecan and irinotecan has been demonstrated in 

previous studies. Topotecan and the active irinotecan metabolite, SN-38, have been 

identified as BCRP substrates [116, 118] while MDR1-mediated transport has been 

reported for topotecan and irinotecan [116, 117]. Notably, expression of BCRP in 

established cancer cell lines and tumor biopsy samples has been associated with 

resistance to camptothecins [100, 101]. Among the uptake transporters, OATP1B1 has 

been implicated in the transport of irinotecan and SN-38, which has also been identified 

as an OATP1B3 substrate [119, 121]. However, little is known about the potential 

interactions between AR-67 and transporters and the implications of these interactions 

on the antitumor activity of AR-67 and its pharmacokinetic profile.   

In this study we explored the interaction of AR-67 with BCRP and MDR1 and with 

OATP1B3 and OATP1B1. First we determined if expression of the efflux transporters 

BCRP and MDR1 would have an impact on the cytotoxic profile of the lipophilic AR-67 

lactone in vitro. Additionally, we examined the effect of OATP1B3 expression on the 

intracellular amounts of AR-67 lactone and carboxylate. Based on recent studies 

reporting increased expression of OATP1B3 in tumor tissues [110, 113], we tested 

whether increased intracellular AR-67 uptake, facilitated by OATP1B3, would potentiate 

the antitumor activity of AR-67 in vitro. To address these questions, we used established 

cancer cell lines that expressed functional forms of the BCRP, MDR1, OATP1B3 and 

OATP1B1 transporters.   
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3.2 Materials and Methods. 

3.2.1 Cell Lines and Reagents. 

Madin-Darby canine kidney II (MDCKII) cells were obtained from the European 

Collection of Cell Cultures. Cells were mock transfected with pcDNA3.1 vector or with 

pcDNA3.1-ABCG2 [131]. OVCAR-8 and its derivative cell line expressing human MDR1 

(NCI/ADR-RES) were from NCI Developmental Therapeutics. HeLa (cervical 

adenocarcinoma) cells were stably transfected with OATP1B3 cDNA and RKO (colon 

carcinoma) cells were stably transfected with OATP1B1 cDNA, inserted in the multiple 

cloning site of the pIRESneo2 vector (Clontech, Mountain View, CA) [108, 132]. MDCKII 

cells were cultured in Minimum Essential Media (MEM) supplemented with 5 % fetal 

bovine serum (FBS) and Geneticin (G418, 800 μg/mL) while OVCAR-8 and NCI/ADR-

RES cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented 

with 10 % FBS. The HeLa and RKO cell lines were grown in DMEM supplemented with 

10 % FBS and Geneticin (G418, 800 μg/mL). Additionally, non-essential amino acids (1 

%) were added to the RKO growth media. Penicillin (100 U/mL) and streptomycin (100 

μg/mL) were added in the media. All of the aforementioned materials were supplied by 

Gibco, Invitrogen Corporation (Carlsbad, CA).  

3.2.2 Validation of expression and functional activity of BCRP, MDR1, OATP1B3 

and OATP1B1. 

3.2.2.1 Immunoblot Analysis. 

BCRP, MDR1 and Top1 protein expression in transfected cell lines was confirmed by 

Western blot analysis using standard procedures. Commercially available antibodies 

clone BXP-21 and clone F4 (Kamiya Biomedical Company, Seattle, WA) and Top1 
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(Abcam, Cambridge, MA) were used for detection of BCRP (1:100), MDR1 (1:1000) and 

Top1 (1:500). Actin (Sigma-Aldrich, St. Louis, MO) was used as a loading control. 

3.2.2.2 Hoechst 33342 and Resazurin Assays. 

BCRP functional activity were demonstrated by measuring intracellular accumulation of 

(2 μM) Hoechst 33342 (Invitrogen, Carlsbad, CA) [67] in the MDCKII-pcDNA and 

MDCKII-BCRP cells in the presence and absence of 4 µM GF120918 [133, 134] (a gift 

from GlaxoSmithKline) as previously described  [87]. Fluorescence was measured in cell 

lysates using a microplate reader and values were normalized to protein concentration 

(Pierce BCA protein Kit, Fisher Scientific). MDR1 functional activity in OVCAR-8 and 

NCI/ADR-RES cell lines was evaluated using Vinblastine (Sigma-Aldrich, St. Louis, MO) 

and Vorinostat (SAHA) (Cayman Chemical Company, Ann Arbor, MI). The cell lines 

were incubated with either Vinblastine (10-9 – 1 μM) or SAHA (10-6 – 756 μM) for 72 

hours and cell viability was assessed using a resazuring assay as described in section 

3.2.8. 

3.2.2.3 RT-PCR Analysis. 

Hela-pIRES, Hela-OATP1B3, RKO-pIRES and RKO-OATP1B1 were grown to 

confluence in growth medium. RNA was isolated using RNeasy Kit (Qiagen) following 

manufacturer’s protocol including on-column DNA digestion. cDNA synthesis was 

performed with High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

Foster City, CA) according to the manufacturer’s protocol. The PCR reaction was 

performed by SYBR Green-based qPCR using an iCycler Multicolor Real-Time PCR 

Detection System (Bio-Rad, Hercules, CA). The gene-specific primers for human 

SLCO1B3, SLCO1B1and 18s were as follows: SLCO1B3, 5’-

GTCCAGTCATTGGCTTTGCA-3’ (forward) and 5’-CAACCCAACGAGAGTCCTTAGG-3’ 

(reverse), SLCO1B1, 5’-TGCTGTGATGTCATTGTCCTT-3’ (forward) and 5’-
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CATGACATGTGAGGTGCCTCCAAG-3’ (reverse), 18s, 5’-

CGCCGCTAGAGGTGAAATTCTT-3’ (forward) and 5’-

CGAACCTCCGACTTTCGTTCTT-3’ (reverse). Amplification conditions were as follows: 

95 °C (5 min), [95 °C (45 sec), 62 °C (1 min), 72 °C (1 min)] × 30 cycles, 95 °C (2 min). 

The PCR products were separated by 3 % agarose electrophoresis and visualized by 

UV in the presence of ethidium bromide. 

3.2.2.4 3H-BQ-123 and 3H-CCK-8 Intracellular Uptake Assay. 

Stable clones of RKO cells with plasmids containing the transporter OATP1B1 or empty 

vector pIRESneo2, were seeded and allowed to reach confluency. BQ-123, a substrate 

for the OATP1B1 transporter [135], was obtained from GE Healthcare. Cells were 

incubated with 5 μM of BQ-123 in transport buffer for 30 min (37°C). To validate the 

function of the OATP1B3 transporter, stable clones of Hela cells with plasmids 

containing the transporter OATP1B3 or empty vector pIRESneo2, were seeded and 

allowed to reach confluency. CCK-8 (GE Healthcare), a substrate specific for only the 

OATP1B3 transporter [136], was incubated at a final concentration of 5 nM in transport 

buffer for 10 min (37°C).  At the end of the incubation period, BQ-123 or CCK-8 was 

removed by aspiration, followed by three successive washes in PBS (4°C).  Cells were 

then dried at 37°C and lysed by shaking at room temperature overnight in 0.2 N NaOH. 

Samples were neutralized with 0.2 N HCl. Intracellular radioactivity of the lysate was 

measured by a liquid scintillation counter from a lysate and scintillation cocktail mixture.  

Protein concentrations of lysates were measured using the Bio-Rad Protein Assay, 

allowing for normalization of samples in CPM/mg. 

3.2.2.5 Immunohistochemistry. 

Immunohistochemical analysis was used to verify the expression of OATP1B3 and 

OATP1B1 in the HeLa and RKO cell lines and liver tissue. Cell pellets and tissues were 
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processed with Histogel (Richard-Allan Scientific, Fisher Scientific) and fixed in 4 % 

formalin. Antigen retrieval was performed using citrate buffer (0.01M citrate buffer, 0.05 

% Tween-20, pH 6.0) at 100 °C for 3 min. A 5 % hydrogen peroxide in PBS solution and 

an avidin/biotin blocking system were used for blocking of the endogenous peroxidase 

and the endogenous biotin. Following incubation with 5 % normal goat serum, slides 

were incubated with anti-OATP2 (OATP2, MDQ/2F260, Novus Biologicals, Littleton, CO) 

(1:100) overnight (4 °C).  The secondary goat anti-mouse antibody (1:100, room 

temperature) was applied. Streptavidin-HRP conjugate (Dako, Carpinteria, CA) and the 

Vector NovaRED peroxidase substrate kit were used for visualization. Nuclei were 

counter-stained using hematoxylin. The expression of the aforementioned transporters 

was evaluated in human liver tissue. To exclude false positive results, slides were 

incubated with chromatographically purified mouse IgG (Zymed, San Francisco, CA). All 

supplies were obtained from Vector (Burlingame, CA) unless otherwise stated.  

3.2.3 Preparation of Drug Stock and Working Solutions. 

AR-67 (DB-67; Novartis) was solubilized in dimethylsulfoxide (DMSO) at a concentration 

of 1 mg/mL (AR-67 lactone stock solution) and stored at -80 °C. AR-67 carboxylate 

working solutions were prepared by dilution of one volume of lactone stock solution with 

9 volumes of 0.005 N NaOH and were allowed to convert to carboxylate overnight at 4 

°C (AR-67 carboxylate stock solution) [137]. Working solutions were stored at -80 °C 

after their preparation and at 4 °C during the experimental procedure.  

3.2.4 Intracellular Amount of AR-67 in BCRP and MDR1 Expressing Cell Lines. 

To examine the effect of ABC efflux transporters BCRP and MDR1 on the intracellular 

amount of AR-67, cells were seeded in six-well plates. The next day, medium was 

replaced and the cells were incubated in serum-free medium (Opti-MEM) with 0.125, 

0.25, 0.5, 0.75 and 1 µM AR-67 lactone for 5 min at 37°C. The incubation time was 
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selected to ensure linearity in the transport process. At the end of the incubation, 

medium was aspirated and cells were washed twice with Opti-MEM (4 °C). Cells were 

lysed with 200 µL of 0.5 N NaOH and placed on a rocker (4 °C) for 10 min. Extraction 

and quantification of AR-67 was carried out as indicated in an HPLC-FL method under 

conditions that ensure system suitability [137]. Protein was quantified using the BCA 

Protein Assay Kit (Pierce, Thermo Fisher Scientific). In inhibition studies, cells were pre-

incubated with GF120918 (5 µM) [133, 134] for 1 h prior to incubation with 1 µM AR-67 

lactone (for 5 min). 

3.2.5 Transepithelial Flux of AR-67. 

MDCKII-pcDNA and MDCKII-BCRP cells were grown on Corning Transwell® 3414 

membrane inserts (3.0-μm pore size, 24-mm diameter; Corning Glassworks, Corning, 

NY). When TEER exceeded 200 ·cm2s in both cell lines, the medium was aspirated 

and replaced with 1.8 ml of serum-free Opti-MEM with or without GF120918 (5 µM) on 

both the apical and basolateral side. Cells were placed at 37°C in humidified 5 % CO2 

incubator for 1 h. When 0.2 ml of 50 µM AR-67 lactone was added to the donor side to a 

final concentration of 5 µM and 0.2 ml of medium was added to the receiver side. Cells 

were then placed on a rocker and incubated at 37 °C and 5 % CO2. AR-67 amount was 

quantified in 50 µL samples using the HPLC method described previously [137]. 

The data collected when studying the BCRP-mediated transport of AR-67 lactone in 

polarized MDCKII transfected cells grown on Transwell® inserts (Fig. 3) were used to 

quantify the efflux activity of BCRP in the presence and absence of GF120918. Apparent 

permeability values and efflux ratios were estimated [138, 139]. Apparent permeability 

values (Papp,A>B and Papp,B>A) were obtained for surface of the transwell membrane 

S=4.5cm2 and after quantifying the AR-67 concentration at the donor side at t=0 h using 
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HPLC [137]. Efflux ratios were equal to Papp,B>A/Papp,A>B. Standard deviation values were 

calculated with the propagation error theory. 

3.2.6 Intracellular Uptake of AR-67 Carboxylate. 

The effect of the expression of OATP1B3 and OATP1B1 on the intracellular uptake of 

AR-67 was studied using the HeLa-pIRES/OATP1B3 and RKO-pIRES/OATP1B1 cell 

lines using serum-free medium (Opti-MEM). To evaluate the dose-dependent OATP-

mediated uptake of AR-67, OATP transfected cell lines were incubated with 0.5, 1, 1.5, 2 

and 3 µM AR-67 carboxylate for 1 min. The incubation time was selected to ensure 

linearity in the transport process as indicated by preliminary studies. The pH of 

carboxylate containing media was 7.2. In inhibition studies, Hela-pIRES/OATP1B3 and 

RKO-pIRES/OATP1B1 cells were incubated with 1 µM AR-67 carboxylate for 5 and 10 

min, respectively. The inhibition of transporter-mediated uptake was studied by pre-

incubation with bromosulfophthalein (BSP) (50 µM) [65, 140] for 10 min and keeping the 

concentration of BSP constant during substrate incubation.  

At the end of the incubation period, cells were washed twice with Opti-MEM (4 °C) 

before being lysed and AR-67, calculated as the sum of the two forms, was extracted 

from the cell lysate and quantified as described above [137]. 

When quantification of each of the AR-67 forms separately was required, cells were 

incubated with AR-67 carboxylate or lactone (1 μM) for 0.083, 0.5, 1, 3, 6, 12, 24 and 48 

h at 37 °C and washed twice with Opti-MEM (4 °C) at the end of the incubation period. 

PBS was added; cells were scrapped off and lysed by sonication. AR-67 lactone and 

carboxylate were extracted and quantified using HPLC [137]. 
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3.2.7 Drug Stability in Culture Media. 

AR-67 interconversion was studied in cell culture media at pH 7.4 (37 ºC) and humidified 

atmosphere of 5 % CO2. AR-67 carboxylate (1 μM) or lactone (1 μM) were added in the 

media at t=0 h. AR-67 carboxylate  and lactone  concentrations were quantified at 0, 0.5, 

1, 2, 4 and 6 h using HPLC [137]. 

3.2.8 Cytotoxicity Assays. 

Cells were seeded in 96-well plates at initial densities that ensured their exponential 

growth for the duration of the experiment. To study the effect of AR-67 lactone and AR-

67 carboxylate on cell viability, cells were seeded and allowed to adhere overnight. 

Twenty-four hours later, the cell culture medium was replaced with drug-containing 

medium. The final concentration of DMSO in cell culture media never exceeded 1 %. 

Cells expressing BCRP and MDR1 were exposed to AR-67 lactone for 72 h. The effect 

of BCRP and MDR1 on AR-67 lactone-induced cytotoxicity was studied in the presence 

of the dual BCRP/MDR1 inhibitor GF120918. MDCKII-pcDNA/BCRP cells were 

pretreated for 30 min with GF120918 (1 μM) followed by co-treatment with GF120918 (1 

μM) and AR-67 lactone. OVCAR-8 and NCI/ADR-RES cells were pretreated for 30 min 

with GF120918 (5 μM) followed by co-treatment with GF120918 (5 μM) and AR-67 

lactone. The cytotoxic effect of AR-67 carboxylate on the OATP expressing cell lines 

after various exposure times was also evaluated. In these cases, cells were treated with 

AR-67 carboxylate for 5 and 30 min, 1 and 3 h. At the end of the incubation period, the 

drug-containing media was removed and the cells were washed once with ice cold PBS. 

Following, drug-free media was added in the wells and cells were allowed to grow for 48 

h at which point their viability was assessed.  

Cell viability was assessed with the CellTiter 96® AQeous Non-Radioactive Cell 

Proliferation Assay kit (Promega, Fisher Scientific) following the manufacturer’s 
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instructions. The viability of the HeLa- and RKO-OATP transfected cell lines was 

evaluated by using a resazurin assay (RSZ, Alamar Blue). 

3.2.9 γH2AX activation in HeLa-pIRES and HeLa-OATP1B3 cells. 

Western blot analysis was used to assess the phosphorylation of Histone 2AX (γH2AX) 

in HeLa-pIRES and HeLa-OATP1B3 cells as a result of exposure to AR-67 carboxylate 

(20 μM) for 5 min. At the end of the treatment period, AR-67 was removed and cells 

were allowed to grow in drug-free media for 3 hr. Cell lysate preparation and western 

blot analysis were performed following standard procedures.  Anti-Phospho-Histone 

H2AX (Cell Signaling, Danvers, MA) (1:500) was used for γH2AX detection. Protein 

expression was quantified performing densitometry analysis using the Molecular Imaging 

Software (version 4.04, Eastman, Kodak, New Haven, CT) and Actin (Sigma-Aldrich, St. 

Louis, MO) was used as a loading control.  

3.2.10 Data Analysis and Statistics. 

GraphPad Prism (version 5.02 for Windows, GraphPad Software Inc., San Diego, USA) 

was employed for the graphical representation of the results, data analyses and 

statistical comparisons.  

To calculate the kinetic parameters for the OATP1B3 and OATP1B1 transporters, AR-67 

intracellular uptake was determined as described above. Transporter mediated uptake 

was corrected by subtracting intracellular amount in mock transfected cells and error 

propagation was applied. Data were modeled using the Michaelis-Menten equation 

which provided us with a satisfactory fitting: 

V = Vmax × C/(Km + C)    

where V (ng of total AR-67/μg protein/min) was the rate of transport of AR-67 lactone or 

carboxylate, C (µM) is the concentration of AR-67 carboxylate added in the well and Km 
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(µM) was the concentration of AR-67 lactone or carboxylate at which the transporter 

activity was equal to its half maximum value (Vmax).  

Dose-response data were also fitted using non-linear regression analysis. The viability of 

the treated cells was normalized with the viability of untreated (control) cells. IC50 values 

were estimated as the dose of the cytotoxic drug that induces response equal to half of 

the maximum response observed.  
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3.3 Results. 

3.3.1 AR-67 Lactone Is a Substrate of BCRP and MDR1. 

BCRP and MDR1-expressing cell lines with validated expression and function (Figure 7-

1 and 7-2 for BCRP and MDR1, respectively) were used to assess the interaction of AR-

67 lactone with these efflux transporters. Initial studies demonstrated a time-dependent 

increase in intracellular amounts within the first 10 minutes. The intracellular amount of 

total AR-67 was then measured following 5 min incubation with a range of AR-67 lactone 

concentrations. Intracellular AR-67 amounts in MDCKII-BCRP (Figure 3-1, A) and 

NCI/ADR-RES cell lines (Figure 3-1, B) were lower than those in MDCKII-pcDNA and 

OVCAR-8 cells, respectively. The transporter effect was reversed when cells were 

pretreated with GF120918 (Figure 3-1, C and D), which is known to inhibit the drug efflux 

mediated by the ABCG2 and ABCB1 gene products [133, 134]. BCRP-mediated efflux of 

AR-67 lactone, in the presence and absence of GF120918, was also evaluated using 

polarized MDCKII transfected cells grown on Transwell® inserts. GF120918 had no 

effect on drug transfer from the apical to the basolateral side in MDCKII-pcDNA cells 

(Figure 3-2, A), but increased the transfer in MDCKII-BCRP cells (Figure 3-2, B). This is 

consistent with the apical expression of BCRP in polarized MDCKII cells [131]. 

GF120918 also attenuated AR-67 transfer from the basolateral to the apical side in 

MDCKII-pcDNA (Figure 3-2, C). However, the effect of GF120918 treatment on MDCKII-

BCRP cells was more significant (Figure 3-2, D) when compared to the effect of GF on 

the MDCKII-pcDNA cells (Figure 3-2, C).  This is consistent with the determination of the 

apparent permeability and efflux ratio values estimated (Table 7-1) for transport across 

BCRP expressing cell monolayers.  Collectively, these data suggest that AR-67 lactone 

is a substrate for MDR1 and BCRP.  
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Our attempt to perform similar studies with AR-67 carboxylate yielded insignificant 

intracellular AR-67 amounts in monolayers and drug transfer across polarized cells (data 

not shown). 
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Figure 3-1. Effect of BCRP and MDR1 expression on the intracellular AR-67 
amounts in MDCKII-pcDNA/BCRP and OVCAR-8/NCI/ADR-RES cells.  

(A) MDCKII-pcDNA/BCRP and (B) OVCAR-8/NCI/ADR-RES cells were incubated 
with 0.125, 0.25, 0.5, 0.75 and 1 μM of AR-67 lactone for 5 min and the AR-67 
intracellular amount was evaluated. The effect of the dual BCRP/MDR1 inhibitor 
GF120918 was tested by treating (C) MDCKII-pcDNA/BCRP and  (D) OVCAR-
8/NCI/ADR-RES cells without (open bars) and with (solid bars) GF120918 (5 µM for 
1 h) prior to incubating with 1 µM AR-67 lactone for 5 min. At the end of the 
incubation periods, the cells were lysed and the intracellular AR-67 was quantified 
using HPLC as mentioned in the Materials and Methods section. Data are 
represented as mean (n=3) ± SD. Statistical analysis was performed using 
unpaired t-test, statistical significance for ** p<0.01 and *** p<0.001. 
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Figure 3-2. Effect of BCRP on the vectorial transport of AR-67 in MDCKII-
pcDNA/BCRP cells.  

Transepithelial transport of 5 µM AR-67 lactone in MDCKII-pcDNA and MDCKII-
BCRP cells apical to basolateral (A, B) and basolateral to apical (C, D) in the 
presence and absence of the inhibitor GF120918 (5 µM). AR-67 was quantified 
using HPLC as determined in the Materials and Methods section. Data are 
represented as mean (n=3) ± SD.  
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3.3.2 AR-67 Carboxylate is Transported by OATP1B1 and OATP1B3. 

Previous in vivo pharmacokinetic studies demonstrated that AR-67 carboxylate has a 

relatively higher clearance than the lactone form [75]. Given the anionic nature of the 

carboxylate, we reasoned that rapid clearance may be through its increased uptake in 

the liver by organic anion transporters. Here, we assessed the uptake of AR-67 

carboxylate in cells transfected with either SLCO1B1 or SLCO1B3. The expression of 

the OATP1B1 and OATP1B3 transporters was validated using RT-PCR analysis and 

immunohistochemistry while their function was evaluated using prototype substrates 

(Figure 7-3). Initial time-dependent studies showed rapid uptake of AR-67 carboxylate in 

both transporter expressing cell lines, but not in the mock transfected cells (data not 

shown). Subsequently, concentration-dependent uptake studies were conducted after 

incubation with AR-67 carboxylate for 1 min. The intracellular amount of total AR-67 was 

significantly higher in the OATP1B3 (HeLa-OATP1B3) and OATP1B1 (RKO-OATP1B1) 

expressing cells than that in the mock-transfected ones (Figure 3-3, A and B, 

respectively). The concentration-dependent uptake of AR-67 carboxylate by OATP1B3 

(Figure 3-3, A) is consistent with saturable kinetics. The transporter mediated uptake 

was diminished by the addition of BSP (Figure 3-3, C and D) [65, 140]. Kinetic analysis 

also demonstrated higher affinity of AR-67 carboxylate for OATP1B3, than OATP1B1, 

with estimated Km values of 0.32 μM and 2.58 μM, respectively. Additionally, incubation 

with the AR-67 lactone form did not result in significant uptake differences between 

OATP1B3 or OATP1B1 and mock transfected cells (data not shown). 
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Figure 3-3. Effect of OATP1B3 and OATP1B1 expression on the intracellular AR-67 
amounts in HeLa-pIRES/OATP1B3 and RKO-pIRES/OATP1B1 cells.  

(A) HeLa-pIRES/OATP1B3 and (B) RKO-pIRES/OATP1B1 cells were incubated with 
0.5, 1, 1.5, 2 and 3 µM of AR67 carboxylate for 1 min to study the dose-dependent 
uptake of the carboxylate form. The estimated Km values for OATP1B3 and 
OATP1B1 were 0.32 (0.0-0.8316) μM and 2.58 (0.0-6.253) μM, respectively. They 
were obtained by using the Michaelis-Menten equation to fit the transporter 
mediated uptake of AR-67 as described in the Materials and Methods section and 
are reported as mean (95 % confidence interval). (C) HeLa-pIRES/OATP1B3 and 
(D) RKO-pIRES/OATP1B1 cells were incubated with 1 μM of AR-67 carboxylate for 
5 and 10 min, respectively (open bars). The inhibitory effect of BSP (50 μM) was 
studied by pretreating for 10 min prior to exposure to AR-67 carboxylate as 
described previously for all cell lines (solid bars). Intracellular AR-67 was 
quantified using HPLC as determined in the Materials and Methods section. Data 
are represented as mean (n=3) ± SD. Statistical analysis was performed using 
unpaired t-test, statistical significance for ** p<0.01 and *** p<0.001. 
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3.3.3 BCRP and MDR1 Confer Resistance to AR-67 Lactone. 

To evaluate the significance of the interaction between AR-67 lactone and the efflux 

transporters BCRP and MDR1, we assessed their potential for conferring drug 

resistance in the context of in vitro cytotoxicity studies. We found that BCRP confers a 

10-fold resistance as measured by the differences in the estimated IC50 values between 

MDCKII-pcDNA and MDCKII-BCRP cells (Figure 3-4, A). The BCRP effect was negated 

in the presence of the transporter inhibitor GF120918 (Figure 3-4, B). Similarly, AR-67 

lactone was significantly more cytotoxic to the OVCAR-8 than the NCI/ADR-RES cells as 

demonstrated by a 100-fold lower IC50 values (Figure 3-4, C). The transporter effect on 

the cytotoxic profile of AR-67 lactone was eliminated in the presence of GF120918 

(Figure 3-4, D). To determine if sensitivity differences between transporter expressing 

and non-expressing cells were due to variability in the expression of the Top1 enzyme, 

we assessed its expression in the MDCKII-pcDNA/BCRP and OVCAR-8/NCI/ADR-RES 

cell lines (Figure 7-4). Our results indicated comparable Top1 protein expression 

between the control and transporter-expressing cell lines. 
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Figure 3-4. BCRP and MDR1 decrease the cytotoxicity of AR-67 lactone.  

(A) Following 72 h drug incubation, IC50 values were estimated in MDCKII-pcDNA 
(0.21 μM, [0.11-0.40], Hill slope -1.269) and MDCKII-BCRP (2.37 μM, [1.41-4.00], Hill 
slope -0.0324), ** p<0.01, unpaired Student t-test). (B) After pretreatment (30 min) 
and in the presence of GF120918 and AR-67 lactone (72 h), IC50 values were 
obtained in MDCKII-pcDNA (0.88 μM, [0.72-1.09], Hill slope -1.979) and MDCKII-
BCRP (1.02 μM, [0.79-1.32], Hill slope -5.357). (C) Similarly, IC50 values were 
estimated in OVCAR-8 (0.027 μM, [0.018-0.043], Hill slope -0.5908) and NCI/ADR-
RES (1.16 μM, [0.79-1.70], Hill slope -1.399), *** p<0.0001, unpaired Student t-test). 
(D) After pretreatment (30 min) and in the presence of GF120918 and AR-67 
lactone (72 h), IC50 values were obtained in OVCAR-8 (0.053 μM, [0.044-0.064], Hill 
slope -1.497) and NCI/ADR-RES cells (0.095 μM, [0.044-0.21], Hill slope -0.8837). 

The AR-67 lactone doses ranged from 10
-7 

to 21 µM. IC50 parameters and best fit 
lines were estimated by nonlinear regression analysis. Data are plotted as mean ± 
SD (n=3) and IC50 values (μM) are reported as (mean, [95 % confidence interval]). 
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3.3.4 OATP1B3 Expression Does Not Sensitize Cells to AR-67 Carboxylate. 

Our study showed that OATP1B3 and OATP1B1, which are highly expressed in the liver 

[92-95], have the potential of transporting AR-67 carboxylate (Figure 3-3). However, 

several recent studies have reported that OATP1B3 is also expressed in tumor tissues 

[110-113]. To determine whether active uptake of the carboxylate could sensitize 

OATP1B3 expressing cells, we conducted cytotoxicity studies (Figure 3-5). The 

equivalent Top1 expression in HeLa-pIRES and HeLa-OATP1B3 was verified by 

Western blot (Figure 7-4). Initially the cytotoxicity of AR-67 carboxylate was assessed 

after 48 h of continuous drug exposure (Figure 3-5, D), but due to the reformation of the 

lactone upon incubation (Figure 3-6) we also determined the cytotoxicity after 0.5, 1, and 

3 h (Figure 3-5, A-C) of drug treatment, which allows for relatively greater carboxylate 

exposure. As expected by the action of camptothecins during S-phase, longer incubation 

resulted in lower IC50 values (Figure 3-5, E). However, OATP1B3 expressing cells were 

not more sensitive than mock transfected cells.  
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Figure 3-5. Time-dependent cytotoxic effect of AR-67 carboxylate on HeLa-pIRES 
and HeLa-OATP1B3 cell lines.  

(A-D) HeLa-pIRES and HeLa-OATP1B3 cell lines were exposed to AR-67 
carboxylate for 30 min (A), 1 (B), 3 (C) and 48 (D) h, as described in the Materials 

and Methods section. The AR-67 carboxylate doses ranged from 10
-3 

to 210 µM. (E) 
Summary of the cytotoxicity of AR-67 carboxylate on HeLa-pIRES and HeLa-
OATP1B3 cells studied under the experimental conditions described in panels A 
to D. IC50 values to reflect the effect of AR-67 on cell viability were used. Cell 
viability was assessed at the end of the treatment as described in the Materials 
and Methods section. Nonlinear regression analysis was performed to model the 
data (solid line). Hill slopes for estimated HeLa-pIRES and HeLa-OATP1B3 IC50 
values after 48 h incubation were -0.5053 and -0.3207, respectively. Data points on 
the graphs are reported as mean (n=3) ± SD and IC50 values (μM) are reported as 
mean, (95 % confidence interval). 
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Figure 3-6. Stability of AR-67 in cell culture media.  

The time course of AR-67 interconversion was studied in cell culture media (pH 
7.4, 37 ºC, 5 % CO2 ) after the addition of 1 μM of AR-67 carboxylate (A) or 1 μM of 
AR-67 lactone (B). Data are represented as the % ratio concentration of 
carboxylate or lactone over total drug. 
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3.3.5 Time-Dependent Intracellular AR-67 Uptake after Exposure to Lactone and 

Carboxylate. 

To gain a better understanding of the apparent lack of sensitivity of OATP1B3 cells to 

AR-67 carboxylate (Figure 3-5), we determined the intracellular exposure to each AR-67 

form. The intracellular uptake of AR-67 was assessed over 48 h after exposing cells to 

carboxylate (1 μM, Figure 3-7, A) or lactone (1 μM, Figure 3-7, B). The lactone form was 

found to dominate the intracellular compartment regardless of which form was added in 

the cell culture media (Figure 3-7). As expected, the intracellular AR-67 carboxylate 

amount was higher in the HeLa-OATP1B3 cells than in the HeLa-pIRES cells at all times 

and irrespective of the extracellular AR-67 form. However, the intracellular lactone 

amount was not different between the two cell lines, but it was significantly higher than 

the respective carboxylate one. The ratio of lactone to carboxylate increased from about 

1, at 5 min, to 34 in the HeLa-pIRES and to 24 in the HeLa-OATP1B3 cell line after 48 h 

of incubation with AR-67 carboxylate (Figure 3-7, A). As expected, when AR-67 lactone 

was added in the cell culture media, it diffused rapidly into both cell lines and was about 

100 times higher than the intracellular carboxylate at the 5-min time point (Figure 3-7, B). 

Although the amount of the intracellular carboxylate increased by almost 5 fold during 

the 48 h incubation, lactone dominated and lactone amounts were significantly higher 

than the carboxylate respective ones (Figure 3-7, B). Importantly, at steady state the 

intracellular lactone and carboxylate reached the same ratio regardless of which form 

was added in the cell culture media (Figure 3-7). Although carboxylate is the form that 

prevails in cell culture medium, after carboxylate (Figure 3-6, A) or lactone addition 

(Figure 3-6, B), this study demonstrates that the cells are exposed to significantly higher 

lactone amounts.  
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Notably, after 5 min of incubation with AR-67 carboxylate, intracellular AR-67 

carboxylate accounted for 42 % and 55 % of the total drug in HeLa-pIRES and HeLa1B3 

cells, respectively. This is the only time point with high intracellular AR-67 carboxylate 

amounts in the OATP1B3 cells compared to the respective lactone ones (Figure 3-7, A). 

To determine if this difference would be adequate to sensitize the OATP1B3 cells to 

carboxylate, we studied the cytotoxic effect of AR-67 carboxylate in Hela-pIRES and 

HeLa-OATP1B3 after drug exposure for 5 min, which was followed by 48 h growth. 

Although the IC50 values of carboxylate and lactone were lower in HeLa-OATP1B3 cells, 

as compared to HeLa-pIRES transfected cells, the differences were not statistically 

significant. As shown in Figure 3-8, A, the relatively increased exposure of OATP1B3 

expressing cells to AR-67 carboxylate over the 5 min drug exposure did not result in 

significant sensitization. To verify this result we then assessed the effect of drug 

exposure on DNA damage by the induction of γ-H2AX [141-143]. In accordance with the 

lack of a transporter effect on cell viability (Figure 3-8, A), the degree of γ-H2AX 

activation after treatment with AR-67 carboxylate (Figure 7-5) did not differ between the 

HeLa-pIRES and the HeLa-OATP1B3 transfected cells. For comparison, the cytotoxic 

effect of lactone was also studied under the same experimental conditions with similar 

results in both cell lines (Figure 3-8, B). Overall, HeLa-pIRES and HeLa-OATP1B3 were 

more sensitive to the lactone rather than the carboxylate when the IC50 values were 

used to evaluate the cytotoxic effect of AR-67 (Figure 3-8).  
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Figure 3-7. Time course of AR-67 carboxylate and lactone intracellular amount in 
HeLa-pIRES and HeLa-OATP1B3 cells after incubation with AR-67 carboxylate or 
lactone.  

HeLa-pIRES and HeLa-OATP1B3 cells were incubated with 1 μM of the AR-67 
forms, carboxylate (A) and lactone (B). AR-67 forms intracellularly were quantified 
by HPLC as described in the Materials and Methods section. Data are represented 
as mean (n=3) ± SD. 
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Figure 3-8. Effect of AR-67 carboxylate and lactone on HeLa-pIRES and HeLa-
OATP1B3 cell lines.  

(A) HeLa-pIRES and HeLa-OATP1B3 cells were treated with AR-67 carboxylate for 
5 min, cells were washed, drug-free media was added in the wells and cells were 
allowed to grow for 48 h before assessing cell viability. The estimated IC50 values 
were 40.32 μM (16.36-99.33) and 13.08 μM (8.29-20.62) for HeLa-pIRES and HeLa-
OATP1B3 cells, respectively. (B) HeLa-pIRES and HeLa-OATP1B3 cells were 
treated with AR-67 lactone for 5 min, cells were washed and drug-free media was 
added in the wells. The estimated IC50 values were 1.08 μM (0.20-5.70) and 0.23 μM 
(0.028-1.93) for HeLa-pIRES and HeLa-OATP1B3 cells, respectively. Data analysis 
to obtain IC50 values was performed using nonlinear regression (solid line). Data 
are presented as mean (n=3) ± SD and IC50 values (μM) are reported as mean (95 % 
confidence interval). 
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3.4 Discussion. 

In this study, we demonstrated that BCRP and MDR1 transport AR-67 lactone. The 

MDCKII-BCRP cell line was found to be more resistant to AR-67 lactone treatment than 

the mock-transfected cells and MDR1 expression conferred resistance to the same 

anticancer agent using OVCAR-8 and NCI/ADR-RES cells. Additionally, we studied the 

interaction between AR-67 carboxylate with the uptake transporters OATP1B3 and 

OATP1B1 and showed that these transporters mediate its transport. However, the 

OATP1B3-expressing cell line did not show increased sensitivity to AR-67 carboxylate in 

validated in vitro systems. In an effort to study the factors that play a role on the 

antitumor activity of AR-67 in vitro, we quantified both AR-67 forms intracellularly after 

treatment with either AR-67 lactone or carboxylate. Interestingly, our intracellular uptake 

data indicated that the AR-67 lactone was favored intracellularly and overcame the 

OATP1B3-mediated increased intracellular uptake of AR-67 carboxylate by fifty-fold. 

This may explain why the uptake of AR-67 carboxylate does not sensitize OATP1B3 

expressing cells.  

Based on the physicochemical properties of the AR-67 lactone and carboxylate, we 

expected that both efflux and uptake transporters would interact with AR-67. Studies 

have shown that MDR1, and possibly BCRP, transport substrates that have the potential 

for partitioning into the lipid bilayer and are mostly lipid-soluble moieties with planar 

aromatic rings [67], like AR-67 lactone. Conversely, OATP1B1 and OATP1B3 proteins 

selectively transport anions [65], such as AR-67 carboxylate. Therefore, in our studies 

we adjusted the pH to ensure the exposure of cells to AR-67 lactone or carboxylate, as 

needed. Furthermore, the exposure and incubation times for transport and cell viability 

assays were considered in the context of lactone/carboxylate conversion kinetics.      
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Our studies showed that AR-67 lactone is a substrate of BCRP and MDR1 (Figure 3-1). 

This is in accord with previous publications showing similar results with topotecan [67, 

116]. Other camptothecin analogs have also been shown to be substrates of BCRP, 

which was reported to transport irinotecan, SN-38 and SN-38 glucuronide [117, 118, 

144]. Our studies also showed that AR-67 carboxylate is transported by OATP1B1 and 

OATP1B3 (Figure 3-3). Previous studies have shown that irinotecan and its metabolite 

SN-38 are substrates of OATP1B1 [119]. However, Yamaguchi et al showed that SN-38, 

but not irinotecan, can be taken up by OATP1B3 [121]. Finally, in vitro studies have 

shown that among the lipophilic camptothecins, gimatecan and karenitecin, but not 

lurtotecan, are substrates of OATP1B1 [120]. However, the authors did not indicate 

which form was transported.  

After identifying AR-67 lactone as a BCRP substrate, we used the MDCKII-

pcDNA/BCRP cell lines to demonstrate that BCRP expression confers resistance to 

treatment with the lactone form (Figure 3-4, A). Our findings agree with findings from 

other studies on camptothecins. BCRP expressing lung cancer cell lines appeared to be 

more resistant to SN-38, than the parent cell line [145]. Moreover, studies in metastatic 

hepatic tumor tissue indicated that BCRP might be implicated in the development of 

resistance specifically to irinotecan-based chemotherapy in vivo [101]. Despite the 

significant expression of BCRP in certain cancer types and especially in a small 

subpopulation of primitive stem cells [115], definitive clinical relevance of BCRP 

expression in tumor tissues has yet to be proven. Additionally, as a result of the MDR1-

mediated efflux of AR-67 in NCI/ADR-RES cells (Figure 3-1, B and D), as compared to 

OVCAR-8 cells, a resistance phenotype was observed (Figure 3-4, C). Previous studies 

have been suggestive of the prognostic role of MDR1 in leukemia patients treated with 

anthracyclines [102, 103], established substrates of MDR1. However, further studies are 
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required to evaluate the impact of an MDR1-AR-67 interaction on clinical response in 

cancer patients. 

Both in vitro and clinical studies have indicated that OATP1B3 facilitates the cytotoxic 

effect of paclitaxel [146, 147]. Here, we tested if OATP1B3 would sensitize cells after 

exposure to the anionic AR-67 carboxylate. Our studies showed that the observed 

cytotoxic effect was not different between HeLa-pIRES and HeLa-OATP1B3 cells 

irrespective of the exposure time to the carboxylate (Figure 3-5). However, the cytotoxic 

effect of AR-67 carboxylate increased in a time-dependent manner consistent with its 

mechanism of action targeting cells primarily in their S-phase. In addition, comparable 

activation of the DNA damage marker γ-H2AX (Figure 7-5) in HeLa-pIRES and HeLa-

OATP1B3 cells after 5 min exposure to AR-67 carboxylate was consistent with the 

absence of OATP1B3 effect on cell viability (Figure 3-8, A). The quantification of the 

intracellular levels of both AR-67 forms suggest that the lipophilic lactone diffused freely 

in the cell while the transfer of the carboxylate form into the cytoplasm was a slow and 

transporter-mediated process, limited by saturable kinetics (Figure 3-7). Ultimately, the 

intracellular lactone/carboxylate steady state amounts, independent of the extracellular 

lactone/carboxylate kinetics (Figure 3-6), suggested that the AR-67 carboxylate-induced 

cytotoxic effect was restricted due to its physicochemical properties. Notably, the same 

intracellular lactone-carboxylate amount ratio was observed when cells were exposed to 

either lactone or carboxylate suggesting that the interconversion between the two forms 

depended strictly on intracellular factors (Figure 3-7). Rapid conversion of carboxylate to 

the lactone form in the cytoplasm due to protein-binding cannot be excluded. Moreover, 

although the intracellular pH would favor carboxylate formation, the AR-67 intracellular 

distribution pattern could be similar to the one observed for third generation lipophilic 
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camptothecin gimatecan, which partitions into lysosomes where the lactone form is 

favored due to low pH conditions [148].  

The microenvironment of solid tumors is characterized by hypoxia and low pH as a result 

of disorganized vasculature and underdeveloped lymphatic system [149, 150]. Previous 

studies have shown increased transport activity of BCRP and MDR1 at acidic conditions 

[151, 152] and pH-sensitive transport activity of OATP1B3 [153]. Therefore, further 

studies on the AR-67 cytotoxic effect under low pH conditions are necessary.   

The first-in-human study showed that approximately 87 % of total AR-67 quantified in the 

blood was in the lactone form and that AR-67 is primarily eliminated through the liver 

[78]. However, pharmacokinetic modeling of preclinical data demonstrated that the 

apparent stability was due to increased carboxylate clearance [75]. Our findings suggest 

that OATP1B1 and OATP1B3 hepatic expression is the likely mechanism for this 

clearance and thus it may play a key role in the disposition of AR-67. These studies, 

therefore, demonstrate how transporters can play a key role in drug disposition without 

having a significant role in cellular uptake and tumor responsiveness. 

Multiple studies have underlined the importance of efflux and uptake transporters in the 

disposition of anticancer agents. Furthermore, genetic polymorphisms in ABCG2 and 

ABCB1 that were identified in patients receiving irinotecan and diflomotecan, 

respectively, resulted in altered pharmacokinetics and pharmacodynamics [154-157]. 

Additionally, SLCO1B1 polymorphisms possibly related with the toxicity profile of 

irinotecan and other cytotoxic agents have been reported [69, 158, 159]. Similarly, the 

clinical impact of in vitro identified OATP1B3 polymorphisms need to be explored further 

in well-designed large-scale human trials [146, 160]. In line with these studies and our 
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results, future studies should explore further the potential role of BCRP, MDR1, 

OATP1B1 and OATP1B3 polymorphisms on the transport of AR-67. 

In conclusion, our study demonstrated that AR-67 lactone is a substrate of the ATP-

binding cassette transporters MDR1 and BCRP. Additionally, both BCRP- and MDR1-

mediated efflux of AR-67 lactone conferred resistance using validated in vitro models. 

The clinical significance of these findings need to be explored further. Although our in 

vitro work suggests that OATP1B3 expression might not increase the efficacy of AR-67 

given to cancer patients expressing the transporter in the tumor tissue, we demonstrated 

that AR-67 carboxylate can be transported by the OATP1B1 and OATP1B3 transporters. 

Taking into consideration the liver-specific expression of these uptake transporters [92, 

93, 95] and the impact of carboxylate clearance on exposure to AR-67 [75], we reason 

that they may be playing a key role in the elimination of AR-67.  
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4. Chapter 4: Protracted dosing of the lipophilic analogue AR-67 

in non-small cell lung cancer xenografts and humans 

 

4.1 Introduction. 

AR-67 [37] is a novel, lipophilic camptothecin analog of the silatecan group. 

Camptothecin analogs are anticancer agents that confer their anticancer effect via 

interaction with the DNA/Top1 complex, primarily during replication [4, 161]. As with 

many cytotoxic anticancer agents, the camptothecin analogue dose range that separates 

optimum response and the onset of toxicity can be narrow [41, 162, 163] and much effort 

has been expended to increase the anticancer effect while minimizing toxicity [33].  

Given that not all cells within a tumor mass are undergoing replication at any given time, 

it was reasoned that more frequent camptothecin dosing would facilitate increased 

efficacy. Indeed, studies in xenograft models clearly demonstrated that protracted dosing 

schedules were more efficacious than shorter courses of therapy with higher doses [125-

128, 164]. However, when protracted low-dose schedules were tested in the clinic, 

response rates were lower than expected [123, 124]. In part, this may have reflected 

species differences in pharmacokinetics as well as differences in tolerating therapy 

considering the generally poor performance status of patients enrolled in early phase 

clinical trials [123, 165]. Further studies showed that efficacy could be improved when 

the therapeutically active drug exposure seen in animals could also be achieved in 

humans [166]. Although, these approaches increased the reliability and accuracy of the 

preclinical models, the goal of identifying the optimal dosing schedule for camptothecins 

in humans has not yet been determined. 
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Here we sought to assess the efficacy and toxicity of AR-67 by considering its 

pharmacokinetics and biodistribution in non-small cell lung cancer xenografts (NSCLC), 

the dose dependent degradation of Top1 in tumor tissue and the expression of protein 

markers that are indicative of camptothecin-induced DNA damage.  First, we determined 

the MTD of AR-67 in mice using the clinically relevant endpoint of hematologic toxicity. 

Subsequently, we evaluated the survival of NSCLC xenografts that received AR-67 at a 

dose cumulatively equal to the previously determined MTD, but administered at 

protracted dosing schedules. Moreover, we assessed the effect of different dosing 

schedules of AR-67 on the expression of Top1 and other apoptosis proteins to 

determine the optimal dose. Finally, to define the most appropriate dosing schedule in 

the clinic, we determined the tumor biodistribution of AR-67 in a pilot clinical study. Not 

unlike targeted therapies, our studies suggest that camptothecin analogues should be 

developed by considering not only their maximum tolerated dose, but also their effect on 

the molecular target, Top1. 
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4.2 Materials and Methods. 

4.2.1 Chemicals and Reagents. 

Magnesium- and calcium-free Dulbecco’s phosphate buffered saline (PBS) was 

purchased from Gibco Invitrogen (Carlsband, CA). 5% Dextrose in water (D5W) was 

from Baxter Healthcare Corporation (Deerfiled, IL).  AR-67 for preclinical studies was 

obtained from Novartis (East Hanover, NJ). Arno Therapeutics (Flemington, NJ) 

provided AR-67 for clinical use. The solid compound was stored at -80°C. AR-67 lactone 

solutions were prepared by reconstituting lyophilized AR-67 with 5% Dextrose in water 

(D5W) and stored at -20°C protected from light until ready for use in in vivo studies. 

4.2.2 Preclinical Studies. 

4.2.2.1 Cell Lines.  

Non-small cell lung cancer NCI-H460 (ATCC, Manassas, VA) were grown and 

subcultured in Dulbecco's Modified Eagle Medium (Fisher Scientific, Fair Lawn, NJ) 

supplemented with Fetal Bovine Serum (Gibco, Invitrogen Corporation, Carlsbad, CA), in 

the absence of antibiotics. Cells were maintained at 37°C in a humidified atmosphere 

containing 5 % CO2. No further cell line authentication in addition to the one offered by 

ATCC (Mycoplasma testing and Short Tandem Repeat profiling) was performed as cells 

were used within 6 months after purchase from the vendor.  

4.2.2.2 Animal Studies.  

Maximum tolerated dose, pharmacokinetics and antitumor efficacy studies were 

conducted using female athymic nude mice (nu/nu, Harlan Laboratories). All 

experiments were approved and conducted following the guidelines set by the University 

of Kentucky’s Institutional Animal Care and Use Committee. In all studies AR-67 was 

administered through the tail vein as an intravenous (iv) bolus. In tumor bearing mice, 
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the tumor volume (V) was calculated by using the formula: V=(D1 x (D2)2 x π) / 6 where 

D1 and D2 are the length and width of the tumor mass, respectively, and D1>D2. Tumor 

dimensions were measured using a Vernier caliper.  

To determine the MTD, non-tumor bearing mice were administered various dosages 

(n=3/dosage) of AR-67 daily for five consecutive days and white blood cell (WBC) counts 

were measured using a Heska Vet Blood analyzer on days 5, 9, 12, and 22. A WBC 

count below 500/µL was selected as indicative of neutropenia and to signify life-

threatening therapy-induced toxicity. Tolerability to camptothecin toxicity was also 

evaluated by calculating the percentage change of body weight from day 1.  Body weight 

loss exceeding 10% signified toxicity. 

The antitumor activity of AR-67 lactone administered following differing dosing schedules 

was assessed using NCI-H460 xenografts. AR-67 lactone was administered as 

presented on Figure 7-6, A. Control animals received D5W. Animals (n=5-8/treatment) 

were monitored individually for tumor volume and survival. Mice were euthanized when 

their tumor volume exceeded 1500 mm3, which was used as a surrogate point for 

mortality.  

To assess the effect of exposure to AR-67 lactone on protein expression at the tumor 

tissue, NCI-H460 tumor bearing animals were used. They received AR-67 lactone as 

described on Figure 7-6, B. Control animals were treated with the drug vehicle. Tumor 

tissues from control- and drug-treated animals were collected 6 hours after AR-67 

administration on the last treatment day.  The tumor tissue was snap-frozen in liquid 

nitrogen and stored at -80°C in cryopreservation vials until processed for protein 

isolation and western blot analysis. 



www.manaraa.com
66 

 

Finally, to study the plasma pharmacokinetics and tumor biodistribution of AR-67, 

animals bearing tumors >50 mm3 were randomized into groups (n=3 animals/time point) 

that received 1 or 5 mg/kg of AR-67 lactone. Non-tumor bearing nu/nu mice were used 

to study the normal tissue biodistribution of AR-67. Blood samples and tissues were 

collected at select time points. AR-67 concentrations were quantified using a validated 

bioanalytical method [137].  

4.2.3 Clinical Study. 

4.2.3.1 Patients.  

Patients (ages ≥ 18 y, n=3) with refractory and metastatic solid tumors were eligible to 

participate in this study. Eligibility and exclusion criteria were similar to those of the 

previously reported phase I clinical trial [78], with the exception of the exclusion of strong 

CYP3A4 substrates, inhibitors and inducers. 

4.2.3.2 Drugs and Study Design.  

The present study was approved by the Markey Cancer Center Protocol Review 

Committee and the University of Kentucky Institutional Review Board. Patients provided 

written informed consent before participating in the trial. 

AR-67 was prepared by reconstituting lyophilized AR-67 with D5W to a final 

concentration between 0.05 mg/mL and 0.5 mg/mL. Within four hours of reconstitution, 

the total volume of AR-67 was infused iv over one hour via an infusion pump using non-

polyvinyl chloride (PVC) bags and tubing, as previously reported [78]. 

In this pilot trial, patients were to receive AR-67 (7.5 mg/m2/day) on days 1, 4, 8, 12 and 

15 of a 21-day cycle. This was equivalent to the cumulative MTD determined during the 

previous phase I study in which patients were treated with the same dosage on days 1-5 

of a 21-day cycle [78].  However, the first participant experienced grade 4 hematological 
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toxicities and as determined in the study protocol, dose de-escalation was performed 

and the two remaining patients received 5.5 mg/m2/day on days 1, 4, 8, 12 and 15.  

The pharmacokinetic profile of AR-67 was studied on day 1 of cycle 1 in all patients. 

Blood samples were collected pre-dose, 5, 45 and 65 minutes, 1.5, 2, 4, 6 and 24 hours 

after the start of the infusion. AR-67 was quantified in the extracted plasma using an 

HPLC method [137]. Additionally, two core-needle biopsies of primary tumor or 

metastasis were obtained from each patient. The biopsies were performed between 3 

and 24 hours after the beginning of the infusion on day 1 of cycle 1 and were at least 3 

hours apart. Core-needle tumor biopsies were obtained under ultrasound/computed 

tomography (CT) guidance or direct visualization. The tissue was snap-frozen to avoid 

protein and AR-67 degradation. Expression levels of Top1 and γH2AX were evaluated in 

the tumor tissue using western blot analysis. A portion of the tumor tissue was also used 

to measure AR-67 concentrations. Standard (calibration) curves and quality control 

samples were prepared in xenograft tumor tissue and AR-67 was quantified by HPLC, 

as previously described [137]. 

4.2.3.3 Assessment, Follow-up and Monitoring.  

Toxicity was graded using the National Cancer Institute Common Toxicity Criteria 4.0 

(CTCAE 4.0). DLT was defined as any of the following that are possibly, probably or 

definitely related to AR-67 (during the first course of therapy): any grade 5 toxicity, grade 

4 neutropenia of > 7 days duration, or grade 4 neutropenia with fever (>1010F) or 

infection of any duration, grade 4 thrombocytopenia, any grade 3 or 4 non-hematologic 

toxicity with the exception of grade 3 nausea and/or vomiting, grade 3 diarrhea of brief 

duration, grade 3 fever (with or without neutropenia) or any grade alopecia). Patients 

were considered evaluable for a DLT if they received at least 3 planned doses of AR-67 

in cycle 1 and had either: proceeded to cycle 2 of therapy, or been followed for at least 
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28 days and met criteria for starting cycle 2. Tumor response was assessed every two 

cycles of therapy based on the Response Evaluation Criteria in Solid Tumors (RECIST) 

(version 1.1) [167]. Tumor volume was measured by computer tomography scan or 

magnetic resonance imaging. In the case of complete or partial response or stable 

disease, patients were allowed to receive AR-67 for up to 6 cycles.  

4.2.4 Immunoblot Analysis. 

Tumor tissue was removed from the -80°C storage and allowed to thaw at 4°C. Tissue 

homogenate was prepared as described previously and in the presence of protein 

inhibitors (Complete Mini, Roche Diagnostics GmbH, Manheim, Germany). Protein 

content was determined using a colorimetric assay as per the manufacturer’s protocol 

(BCA Protein Assay, Thermo-Fisher Scientific, PA). The samples were electrophoresed 

using standard procedures; membranes were incubated with anti-Top1 (Abcam, 

Cambridge, MA), anti-γH2AX, anti-cl-caspase 3 and anti-caspase 3, anti-PARP and anti-

cl-PARP (dilution 1:1000) (Cell Signaling, Danvers, MA) and anti-actin (dilution 1:2000) 

(clone AC-15, Sigma-Aldrich, St. Louis, MO) overnight at 4°C. Actin was used as loading 

control. Protein expression was quantified by performing densitometry analysis and 

using the Molecular Imaging Software (version 4.04, Eastman, Kodak, New Haven, CT) 

4.2.5 Pharmacokinetic and Statistical Analysis. 

AR-67 pharmacokinetic parameter estimates were obtained by performing non-

compartmental analysis using Phoenix WinNonLin 6.2 (Pharsight, CA). GraphPad Prism 

(version 5.01, GraphPad Software Inc., San Diego, CA) was used for statistical analyses 

and graphical data representation. Exposure to AR-67 was evaluated by calculating the 

Area Under the Curve (AUC) of the plasma or tissue concentration versus time graphs 

(0 to 6 h) (GraphPad Prism) using the trapezoidal rule.  Effects of AR-67 dosing 

schedules on survival of xenograft bearing mice was assessed using Kaplan-Meier 
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survival analysis. Median survival times were compared using one-way ANOVA and the 

Tukey test for multiple comparisons, p<0.05 for statistical significance. Animals removed 

from the study were no longer plotted in the tumor growth curves. Data are presented as 

[mean; error bars, SD]. 
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4.3 Results. 

4.3.1 Toxicity Profile of AR-67 in Nude Mice.  

Historically, body weight has been used as a marker of drug-induced toxicity in animal 

models. However, in the clinical setting neutropenia is one of the major DLT associated 

with exposure to camptothecins [41, 78]. Therefore, animals that received AR-67 were 

monitored for both weight loss and hematological toxicity. Notably, the WBC counts of 

the drug-treated animals decreased in a dose-dependent manner (Figure 4-1, A). On 

day 5, animals that received 10 and 15 mg/kg AR-67 had WBC counts indicative of 

neutropenia, but these counts returned to normal within 4 days after the end of the 

treatment (Figure 4-1, A).  Percent change in body weight is shown in Figure 4-1, B. The 

most pronounced decrease in body weight was 6.8 and 7.3 % in animals that received 

10 and 15 mg/kg AR-67, respectively. Treated animals regained weight after treatment 

cessation. Comparatively, monitoring the WBC counts was a better marker of drug-

related toxicity than tracking changes in body weight.  In view of these findings, the MTD 

of AR-67 lactone was 7.5 mg/kg given daily as an iv bolus for 5 consecutive days.   
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Figure 4-1. Effect of AR-67 treatment on white blood cell count and body weight in 
non-tumor bearing nude mice.  

Animals received AR-67 lactone daily for five consecutive days at doses equal to 
5, 7.5, 10 and 15 mg/kg as indicated by arrows. White blood cell counts (A) were 
obtained on days 5, 9, 12 and 22 and body weight (B) was monitored daily during 
the treatment period and on days 8, 10, 12, 14, 16, 18, 20 and 22. Dashed lines (at 
Y=0.5 for panel A and at Y=90 for panel B) signify AR-67-induced toxicity 
associated with decrease of the white blood cell population at levels indicative of 
neutropenia (500/μL) (A) or with 10% loss of body weight (B). Data points consist 
of 3 mice per time point; bars, SD. 
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4.3.2 Antitumor Activity of AR-67 In NSCLC Xenografts.  

Previous studies have indicated schedule-dependent antitumor activity for 

camptothecins [125-128]. To replicate those findings with AR-67, NSCLC xenografts 

received AR-67 at differing dosing schedules. Tumor volume and survival curves of 

NSCLC xenografts are depicted in Figure 4-2. Treatment with AR-67 lactone inhibited 

tumor growth in NCI-H460 NSCLC tumor bearing mice (Figure 4-2, A).  Contrary to the 

more intense dosing schedule (7.5 mg/kg, Dx5), the AR-67 protracted dosing schedules 

(3.75 mg/kg, Dx5x2 and 2.5 mg/kg, Dx5x3) resulted in longer survival time (p<0.05) than 

vehicle treated animals. However, survival was comparable between the animals being 

treated with the 3.75 mg/kg, Dx5x2 and 2.5 mg/kg, Dx5x3 dosing schedules (p>0.05).  
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Figure 4-2. Antitumor effect of AR-67 in NSCLC xenografts.  

Tumor growth (A) and survival curves of nude mice bearing NCI-H460 tumors (B). 
NCI-H460 tumor-bearing nude mice received AR-67 lactone or D5W as an iv bolus 
following varying dosing schedules. Groups consisted of 7-8 mice per treatment; 
bars, SD. 
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4.3.3 Schedule-dependent Biological Effects of AR-67 In Tumor Tissue Obtained 

From NSCLC Xenografts.  

Previous studies have demonstrated a reversible decrease in the expression of Top1 as 

a resistance mechanism used by cancer cells treated with camptothecins, including AR-

67 [9, 168].  Here we assessed the effect of different dosing schedules on the 

expression level of Top1 and other proteins implicated in the mechanism of action of AR-

67. As presented in Figure 4-3, western blot analysis showed that Top1 expression is 

inversely related to the dose administered and is maintained at higher levels when AR-

67 is given intermittently at low doses. Subsequently, we evaluated if the sustained 

expression of Top1 correlated with DNA damage. Previous studies have indicated that 

phosphorylation of H2AX (γH2AX) is directly associated with camptothecin-induced DNA 

damage leading to its evaluation as a biomarker of response to camptothecins [141-

143]. In our study, γH2AX expression appeared to be schedule-dependent with highest 

protein levels being detected in tissue samples obtained from the low-dose 3.75 mg/kg, 

Dx5x2 and 2.5 mg/kg, Dx5x3 treatment groups (Figure 4-3). We then probed further for 

the effect of DNA damage by assessing cleaved PARP (cl-PARP). Typically, cleavage of 

total PARP after exposure to cytotoxic agents is suggestive of cellular disassembly and 

apoptosis [169, 170] and is mediated by cleaved caspase 3 (cl-caspase 3), the active 

form of caspase 3 [171]. Specific to camptothecin analogue treatment, PARP cleavage 

was detected in tumor biopsies obtained from colon cancer patients before and after 

irinotecan administration [172]. In our xenograft model, western blot analysis showed 

expression levels of cl-caspase 3 and cl-PARP in the animals of the 2.5 mg/kg, Dx5x3 

and 3.75 mg/kg, Dx5x2 treatment groups. On the contrary, the animals of the 7.5 mg/kg, 

Dx5 treatment group had non-detectable levels of cl-caspase 3 and cl-PARP (Figure 4-

3).   
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Figure 4-3. Biological activity of AR-67 lactone in NSCLC xenografts.  

Evaluation of the expression level of Top1, γH2AX, cl-caspase 3, caspase-3, cl-
PARP and PARP in tumor tissue obtained from NCI-H460 xenografts using 
western blot analysis. Actin was used as a loading control. Groups consisted of 3 
mice per treatment; bars, SD. 
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4.3.4 AR-67 Plasma And Tumor Pharmacokinetics In NSCLC Xenografts.  

Drug partitioning and achieving pharmacologically relevant concentrations at the tumor 

tissue are essential for antitumor activity [173, 174]. In addition, considering the high 

lipophilicity of AR-67 lactone, we sought to determine its tumor and tissue biodistribution 

so that we could facilitate the design of an optimal dosing schedule. Plasma and tumor 

concentration profiles of total (lactone and carboxylate) AR-67 in NCI-H460 tumor 

bearing nude mice after the intravenous administration of 1 and 5 mg/kg of lactone are 

presented in Figure 4-4, A and B, respectively. Following administration, the plasma 

concentration of total AR-67 rapidly decreased bi-exponentially. AR-67 partitioned into 

the tumor tissue and maximum concentrations were observed at 5 min and 45 min after 

doses 1 and 5 mg/kg of AR-67, respectively. The elimination half-life (t1/2) (mean (±SD)) 

of AR-67 in plasma was 1.4 h (± 0.4) and 1.4 h (± 0.3) after administration of 1 and 5 

mg/kg of lactone, respectively. Interestingly, the half-life at the tumor tissue was 4.0 h (± 

1.8) and 16.1 h (± 7.9) after administration of 1 and 5 mg/kg of AR-67, respectively. 

Collectively, these data suggest that the elimination of AR-67 takes place at a slower 

rate from the tumor compared to the plasma compartment. 

Dose-normalized systemic and tumor exposures are depicted in Figure 4-4, C. The dose 

normalized AR-67 AUC was equivalent for the 1 and 5 mg/kg dosages suggesting linear 

pharmacokinetics in plasma, which is consistent with the previous observation in the first 

in man study [78]. On the contrary, in the tumor tissue the dose normalized AUC of the 5 

mg/kg dose was more than 3 times higher than that of the 1 mg/kg dose. These results 

suggest non-linear kinetics of AR-67 at the tumor tissue. To determine whether this was 

a tumor-specific phenomenon, we also measured AR-67 in lung, heart, liver, kidney and 

brain after dosing animals with 1 mg/kg (data not shown) and 5 mg/kg (Figure 4-4, D). 

AR-67 partitioned in all organs, with highest amount identified in the liver. Interestingly, 
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AR-67 appears to be eliminated faster from normal tissues, than from tumor tissue, with 

t1/2 ranging from 1.0 h (± 0.1) to 1.4 h (± 0.4) in the liver, kidney, brain, and lung of 

animals receiving the 5 mg/kg dosage (Figure 4-4, D).   
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Figure 4-4. AR-67 pharmacokinetics in NSCLC xenografts.  

Pharmacokinetic profile of total AR-67 in plasma (open symbols) and tumor tissue 
(solid symbols) after intravenous bolus administration of 1 (A) and 5 (B) mg/kg of 
AR-67 lactone in NCI-H460 xenografts. Plasma (solid bars) and tumor (open bars) 
dose normalized AUC0→6h of total AR-67 levels (C) after iv administration of 1 and 5 
mg/kg of AR-67 lactone in NCI-H460 xenografts. (D) AR-67 biodistribution in nu/nu 
mice. Pharmacokinetic profile of total AR-67 in lung, liver, kidney and brain tissue 
after intravenous bolus administration of 5 mg/kg of AR-67 lactone in nude mice. 
Data consists of 3 mice per time point group; bars, SD. 
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4.3.5 Clinical Summary.  

Our preclinical data in NSCLC xenografts demonstrated the superiority of protracted 

dosing of AR-67 (Figure 4-2) and a long half-life in tumor tissue (Figure 4-4, B). To test 

the validity of the latter finding in humans, we designed a pilot clinical trial. AR-67 was 

given at 7.5 mg/m2/day, which is the MTD determined in a previous phase I clinical trial 

[78]. In the present study, however, the same cumulative AR-67 dose was given 

intermittently over 15 instead of 5 days. To design the protracted dosing schedule for 

AR-67, the estimated tumor half-life (~16 hours) in NSCLC xenografts (Figure 4-4, B) 

was taken into consideration and a 96-hour dosing interval was selected in this proof-of-

principle trial. Moreover, the schedule-dependent expression of Top1 was suggestive of 

its value as a biomarker of biological response. Therefore, based on our preclinical 

studies, Top1 expression profile appears to be a factor that needs to be taken into 

consideration when designing dosing schedules of camptothecins that aim to optimize 

efficacy.  

Patients were enrolled between October 2010 and June 2011. Participants had 

previously received standard therapy and showed progressive disease. Metastatic 

disease was present in all participants. Patient demographics are presented on Table 4-

1. 

As this was the first time AR-67 was given following a protracted dosing schedule, 

patients were followed closely for toxicity and response. The first recruited patient 

developed DLTs of grade 3 fatigue and grade 4 neutropenia. Therefore, the 7.5 

mg/m2/day dose level was not considered tolerable and dose reduction was introduced 

per study protocol. Overall, AR-67 exhibited the same toxicity profile as previously 

reported [78]. Namely, hematological toxicities and fatigue were identified as dose 

limiting. AR-67 dose of 5.5 mg/m2/day of AR-67 was well tolerated by the remaining 
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study participants. Interestingly, although stable disease was observed with one of the 

study participants that received AR-67 at the 5.5 mg/m2/day dose, the patient was taken 

off the study protocol due to fatigue and symptomatic deterioration. A summary of 

toxicities and responses is presented on Table 4-1. 
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Table 4-1. Patient characteristics, dose to escalation scheme, clinical responses and DLTs. 

Patients Gender Age  
(yrs) AR-67 Clinical 

Response Dose-limiting Toxicities 

   
Dose 

(mg/m2/d) 
Treatment Cycles 

Completed   

#1 Male 55 7.5 1 PD Fatigue, neutropenia 
#2 Male 37 5.5 1 PD Anemia 
#3 Female 61 5.5 4 SD Fatigue, anemia 

All patients were Caucasians, PD: Progressive Disease, SD: Stable Disease 
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4.3.6 AR-67 Plasma And Tumor Pharmacokinetics In Cancer Patients.  

As stated previously, the major objective of this pilot clinical study was to characterize 

the pharmacokinetics of AR-67 at the tumor site. Based on the tumor pharmacokinetics 

of AR-67 in NSCLC xenografts (Figure 4-4, A and B), the half-life of AR-67 in the tumor 

was estimated to be significantly higher than its plasma half-life. Therefore, we obtained 

serial tumor biopsies from patients at the presumed terminal phase in order to assess 

the half-life and relative concentrations compared to plasma. The first biopsy was 

obtained at 4-6 hours and the second at 22-25 hours after the beginning of the infusion. 

The amount of tissue collected varied significantly between patients (0.8 - 55.2 mg) and 

adequate amounts for quantifying AR-67 were only collected from one patient with a skin 

lesion. The plasma pharmacokinetic profiles of all patients as well as the measured 

tumor concentrations from a single patient are presented in Figure 4-5. Interestingly, as 

previously demonstrated in the NSCLC xenografts (Figure 4-4, A and B), tumor 

concentrations in tumor tissue at ~4.5 hours were higher than plasma and still 

measurable at ~24 hours. In contrast, plasma concentrations were minimal by 6 hours 

and undetectable at 24 hours, in all patients.  
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Figure 4-5. AR-67 plasma and tumor pharmacokinetic profile in patients with solid 
tumors.  

Total AR-67 concentrations in plasma (open symbols) and tumor (closed symbols) 
after intravenous administration of AR-67 lactone as an 1-hour infusion on day 1 
of cycle 1. Plasma samples were collected at predose and 0.1, 0.8, 1.1, 1.5, 2, 4, 6 
and 24 hours after the start of the infusion on day 1 of cycle 1. Biopsies (skin 
lesion) were collected at 4.5 and 23.4 h after the start of the infusion. 
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4.3.7 Pharmacodynamic Analysis In Tumor Tissue Obtained From Cancer 

Patients.  

Our studies using NSCLC xenografts (Figure 4-3) revealed the schedule-dependent 

expression of Top1 and support its further evaluation as a biomarker of biological 

response. Having demonstrated sustained concentrations of AR-67 in tumor tissue for 

24 hours we proceeded in studying the effect of drug exposure on Top1 and γH2AX in 

the tumor tissue collected from the study participants. Interestingly, Top1 protein 

expression increased in the majority of patients. However, drug exposure had 

contradictory effects on the expression profile of γH2AX in the only two patients with 

γH2AX detectable levels in this study (Figure 7-7).  
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4.4 Discussion. 

We have demonstrated that the antitumor activity of AR-67 in NSCLC xenografts is 

schedule-dependent and low doses given over a protracted schedule were more 

efficacious than a high dose administered over 5 consecutive days. In view of these 

results, we examined the expression profile of proteins implicated in the camptothecin 

mechanism of action. Our analysis clearly showed that the expression pattern of Top1, 

the enzyme-target of AR-67, was schedule-dependent and sustained Top1 expression 

correlated with molecular markers of DNA damage as well as with improved efficacy in a 

xenograft model. Our studies also demonstrated that AR-67 accumulates in tumor tissue 

and, contrary to the plasma compartment, displays non-linear kinetics. Camptothecin 

analogues are thought of as cytotoxic drugs. However, Top1 undergoes proteasome 

mediated degradation following exposure to increased drug concentrations [11]. Here we 

also observed dose dependent Top1 degradation in vivo and these data (Figure 4-3) 

provide evidence that suggests camptothecin development should also be considered in 

the context of sustained Top1 expression.  

As reported with other camptothecins [125, 127, 128, 164], the AR-67 antitumor activity 

was schedule-dependent (Figure 4-2), with low-dose protracted dosing schedule found 

superior. Protracted dosing maximizes the number of S-phase cells being exposed to 

AR-67 rendering the camptothecin highly toxic and efficacious. Survival of NSCLC 

xenografts indicated that AR-67 exhibits superior antitumor efficacy when given 

intermittently at low doses. Our data suggest that prolonged low-dose schedules, which 

do not eradicate Top1 (Figure 4-3), facilitate marked therapeutic behavior. On the basis 

of these findings, Top1 expression appeared to be a critical requirement for drug efficacy 

and could be a predictive marker of efficacy in future clinical trials. In vitro and in vivo 

studies [9, 10] have described the reversible proteasome-mediated degradation [11]  of 



www.manaraa.com
86 

 

Top1 in the presence of the drug. Because of the interplay between camptothecins and 

Top1, as well as dependence on the expression of the protein-target for exhibiting 

anticancer activity [175], camptothecins appear to share traits of molecularly targeted 

agents. Although AR-67 is considered a cytotoxic agent, verification of biological activity, 

through identification of targets of interaction and biomarkers of biological activity is 

essential to the success of effective drug development [176-178].   

The pharmacokinetics of AR-67 were non-linear at the tumor tissue (Figure 4-4, A and 

B). We hypothesize that this is potentially the result of increased partitioning of the 

lipophilic AR-67 lactone [179] which is favored in the acidic tumor microenvironment and 

of increased protein binding in the tumor tissue [149, 180]. Regardless of the underlying 

mechanism, the non-linear kinetics of AR-67 in tumor tissue (Figure 4-4, C) suggests 

that the plasma concentrations alone should not be considered when deciding on a 

dosing schedule. 

In view of our preclinical studies, a pilot clinical trial was undertaken to demonstrate 

feasibility and to assess toxicity. The study did meet its objective to test the feasibility of 

obtaining two serial tumor biopsies from the participants within 24 h after the beginning 

of the infusion on Day 1 of Cycle 1. As in the NSCLC xenografts, differing AR-67 kinetics 

between the plasma and the tumor was observed in one of the study participants (Figure 

4-5). The undetectable AR-67 amounts in the rest of the patients can be attributed to the 

small tissue amount collected for biopsy and the lower dose (5.5 mg/m2/d) these patients 

received (Table 4-1). These limiting factors should be taken into consideration when 

designing future trials. In addition, the MTD at the protracted schedule should be 

evaluated, but in the context of Top1 expression. 
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In conclusion, in xenograft studies, AR-67 appeared to be more efficacious when 

administered following a low-dose protracted dosing schedule rather than a high-dose 

short dosing schedule (daily x 5) and this resulted in sustained Top1 expression, which 

correlated with prolonged survival.  Furthermore, we demonstrated that AR-67 follows 

non-linear kinetics in NSCLC xenografts. Future studies will need to carefully evaluate 

surrogate tissues for the expression of Top1 and other markers (e.g., γH2AX, cl-PARP) 

as a way to optimize the dosing schedule of AR-67. 
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5. Chapter 5: Population Pharmacokinetic Analysis of the 

Lipophilic Camptothecin Analogue AR-67 in Phase I 

Oncology Patients 

 

5.1 Introduction. 

Camptothecins are considered basic components of clinical oncology today. They 

interact with Top1, a nuclear enzyme responsible for relieving DNA torsional stress and 

induce cell death by stabilizing the DNA-enzyme-drug complex [3, 4]. Moreover, 

camptothecin analogues are present in two forms, the charged carboxylate and the 

lipophilic lactone that are engaged into a pH- and protein-binding-dependent equilibrium 

[16, 18]. However, it is believed that their cytotoxic action is mediated via the lactone 

species [3].  

Similarly to most anticancer agents, camptothecins have a relatively narrow therapeutic 

index and their administration has been associated with life-threatening toxicities [40, 41, 

163]. Identifying sources of intersubject variability allows the establishment of an 

accurate dose-exposure-response relationship that could lead to enhanced efficacy and 

reduction of toxicity. For those reasons, the pharmacokinetic profile of camptothecins 

has been studied extensively and covariates have been included in population 

pharmacokinetic models to increase their predictive value [46-48, 70, 72, 181, 182]. 

Studies introduced renal function as the most important determinant of topotecan 

clearance [46-50, 52]. Contrary, impaired liver function, UGT1A1*28 homozygosity and 

co-administration of metabolic enzyme inducers or inhibitors were found to correlate with 

chemotherapy-related toxicity in patients treated with irinotecan [63, 71, 183, 184].  
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AR-67 [38, 74, 76, 77] is a novel camptothecin analogue, currently undergoing early-

stage clinical trials. Its pharmacokinetic and pharmacodynamic profile was studied for 

the first time in humans during a phase I clinical trial [78]. Notably, exposure to AR-67 

correlated well with hematological toxicity experienced by the study participants. 

Subsequent in vitro studies on the metabolic profile of AR-67 suggested elimination via 

extensive metabolism  by uridinoglucuronosyltransferases (UGT) and CYP450 enzymes 

localizing in the gut and the liver [79]. As AR-67 is currently being evaluated in phase 2 

clinical trials, it is necessary to concentrate our efforts on determining the patient 

characteristics that contribute to the high intersubject variability associated with 

estimates of pharmacokinetic parameters. Determining sources of inter-individual 

variability with clinical relevance will allow us to identify the patients that could benefit the 

most from being treated with this novel camptothecin analogue.  

In this study, the pharmacokinetic and pharmacodynamic data collected during the 

phase I clinical trial were analyzed to describe the distribution and elimination profile of 

AR-67. Covariates contributing to intersubject variability were included in the developed 

population pharmacokinetic model and estimates for the AR-67 population 

pharmacokinetic parameters were obtained. Additionally, the effect of smoking, obesity 

and performance status on AR-67 pharmacokinetic and toxicity profile was studied. 

Finally, the lactone clearance was normalized to body-size measures in an effort to 

decrease the intersubject variability associated with this clinically important 

pharmacokinetic parameter. 
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5.2 Materials and Methods. 

5.2.1 Patient Population. 

The analysis performed included AR-67 plasma concentration versus time data from 

patients with solid tumors that participated in a phase I clinical trial [78]. The aims of the 

study were to determine the maximum tolerated dose and to identify the dose-limiting 

toxicities for this novel camptothecin analogue. AR-67 was administered as a 1-hr 

infusion daily for first 5 days of a 21-day cycle.  Patient eligibility criteria have been 

described elsewhere [78]. Briefly, patients were ≥18 yrs of age, ECOG performance 

status ≤2, normal hematological tests and adequate renal and liver function, no prior 

chemotherapy, radiation (within 2 weeks) or surgery (within 3 weeks) was allowed. 

Patients allergic to other camptothecins or cremophor-EL and patients receiving 

anticonvulsants or any other strong enzyme inducers were excluded from the study. The 

study was approved by the Institution Review Board of the University of Kentucky and 

written informed consent was obtained from patients before entering the clinical trial.  

Of the 26 patients that participated in the phase I clinical trial, only those with a complete 

covariate profile (n=19) were considered for the development of the base and covariate 

models for lactone and total AR-67 in plasma and when testing for inter-occasion 

variability. The demographics and clinical characteristics of the patients at study entry 

[78] are summarized on Table 5-1.   
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Table 5-1. Patient demographics and clinical characteristics. 

Patient 
Characteristic  

N Mean Median (range) 

Age, yrs 
 

19 55.9 61 (30-72) 

BSA, m2 
 

19 1.91 1.87 (1.48-2.44) 

Sex 
Female 10 

  
Male 9 

  
CRCL, mL/min 

 
19 109.4 105 (50.4-162.7) 

BUN, mg/dL 
 

19 12.7 12 (4-22) 

Alb, g/dL 
 

19 2.9 3 (1.2-3.7) 

Tbil, mg/dL 
 

19 0.7 0.6 (0.4-2.3) 

ALP, U/L 
 

19 127.2 104 (45-281) 

ALT, U/L 
 

19 20.1 17 (7-38) 

AST, U/L 
 

19 29.3 28 (12-51) 

LDH, U/L 
 

19 256.7 181 (101-469) 

DOSELEV, 
mg/m2/day  

1.2 (n=1), 1.6 
(n=1), 2.34 
(n=2), 3.23 

(n=3), 4.5 (n=1), 
6.3 (n=1), 12.4 

(n=1), 8.9 (n=2), 
7.5 (n=5) 

  

HCT, % 
 

19 34.5 34.4 (26.7-44.0) 

Tobacco 
Yes 5 

  
No 17 

  
Liver tumor 
(primary, 

metastatic) 

Yes 11 
  

No 14 
  

Gastrointestinal 
tract tumor 
(primary, 

metastatic) 

Yes 8 
  

No 17 
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Table 5-1: continued 

BMI, kg/m2 

<25 7 20.6 20.6 (16.8-24.3) 

25-30 11 27.6 27.8 (25.3-29.1) 

>30 7 40.4 34.2 (30.2-73.6) 

PS 

0 7 
  

1 3 
  

2 15 
  

Edema 
Yes 13 

  
No 12 

  
BSA: Body surface area, CRCL: creatinine clearance, BUN: blood urea nitrogen, Alb: 

albumin, Tbil: total bilirubin, ALP: alkaline phosphatase, ALT: alanine transaminase, AST: 
aspartate transaminase, LDH: liver dehydrogenase, DOSELEV: AR-67 dose level that 
patients were assigned to, HCT: hematocrit, BMI: Body Mass Index, PS: Performance 

Status. 
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Moreover, body weight (WT, kg) and height (HT, m) measurements from the study 

participants  were used to estimate body-size measures such as Body Surface Area 

(BSA, m2), Lean Body Weight (LBW, kg), Ideal Body Weight (IBW, kg), Adjusted Ideal 

Body Weight (AIBW, kg) and Body Mass Index (BMI, kg/m2) using the following 

equations [185, 186]: 

BSA=0.007184 x WT0.425 x HT0.725 (1) 

LBW (male) = (1.1 x WT) - 1.28 x (WT/HT)2 (2) 

LBW (female) = (1.07 x WT) - 1.48 x (WT/HT)2 (3) 

IBW (male) = 50 + 2.9 x (HT in inches - 60) (4) 

IBW (female) = 45.5 + 2.3 x (HT in inches - 60) (5) 

AIBW= IBW + 0.25 x (WT-IBW) (6) 

BMI=WT/[HT(in m)]2 (7) 

In our study, individuals with BMI<25 were considered of normal weight while the BMI of 

overweight individuals ranged from 25 to 30. Individuals with BMI>30 were considered 

obese.  

Patients were closely monitored for hematological toxicity. Measurements of the 

absolute neutrophil count (ANC, 103/uL), white blood cell counts (WBC, 103/mm3), 

hemoglobin levels (Hb, g/dL) and platelet counts (PLT, 103/mm3) were taken on day 1 

(baseline), 8, 15 and 21 of cycle 1. The lowest value among the collected measurements 

per individual during cycle 1 was declared as the nadir. The %ANC, WBC, Hb and PLT 

decrease baseline-normalized was calculated as the % absolute difference between the 

baseline and the nadir measurements divided by the baseline measurement.  
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5.2.2 Drug Administration. 

AR-67 was supplied by the National Cancer Institute (Rapid Access to Intervention 

Development program) and prepared for administration as described by Arnold et al. 

[78]. The investigational agent was administered at 9 dose levels ranging from 1.2 to 

12.4 mg/m2/day (Table 5-1).  

5.2.3 Pharmacokinetic Sampling And AR-67 Quantitation In Plasma. 

Blood samples were collected from each patient at predose, 5, 45, 65 min and 1, 5, 2, 4, 

6, 8 and 24 h after the start of the infusion on days 1 and 4 of cycle 1 and AR-67 lactone 

and carboxylate were quantified in the extracted plasma using a validated HPLC 

method, as described previously [137]. Lactone concentrations lower than 2.5 ng/mL 

and carboxylate concentrations lower than 1.0 ng/mL were not considered for the 

pharmacokinetic analysis as they were lower than the lower limit of quantification. The 

mean number of samples per patient included in the analysis was 13. 

5.2.4 Nonlinear Mixed Effects Modeling Analysis. 

Population pharmacokinetic analysis was performed following the nonlinear mixed 

effects theory as implemented in NONMEM (version 7.2.0, Icon Development Solutions, 

Ellicott City, MD, USA) integrated with PDx-POP (version 5.0, Icon Development 

Solutions, Ellicott City, MD, USA). Model development was performed as described in 

Bonate, 2011 [187] as well as the NONMEM User’s Guide [130, 188].  

The Expectation-Maximization (EM) method offered by NONMEM was used for the 

pharmacokinetic population analysis. Studies [129] have shown that the EM methods 

exhibit low running times and perform well with categorical data (non-normal) and 

complex pharmacokinetic/pharmacodynamic models. In our analysis, we obtained good 

initial parameter estimates using the Iterative Two Stage (ITS) method. Those initials 
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estimates were used by the Stochastic Approximation Expectation Maximization (SAEM) 

method to obtain maximum likelihood estimates for population parameters. The analysis 

was completed with the use of the Important Sampling (IMP) method where only the 

expectation step was performed to improve the objective function and the standard error 

estimates. As the Expectation-maximization methods perform better with MU 

referencing, the latter was implemented into the model.  

5.2.5 Base Model. 

Visual inspection of the log transformed lactone (Figure 7-8) and total AR-67 (Figure 7-9) 

plasma concentration data versus time and previously published work on camptothecins 

[46] led to the selection of a two-compartment pharmacokinetic model with first-order 

elimination from the central compartment to fit the concentration-time data (ADVAN 3, 

TRANS 4 subroutine in NONMEM). Estimates were obtained for the population 

parameters: clearance (CL) from the central compartment, volume of the central 

compartment (V1), inter-compartmental clearance (Q) and volume of the peripheral 

compartment (V2).  

The intersubject variability (η, Eta) on the population estimate (Ppop, θ, Theta) of the 

pharmacokinetic parameter P for subject (i) (Pi) was modeled as an exponential term 

equal to: 

Pi=Ppop x exp(ηi) (8) 

The residual error (ε, Epsilon), the difference between the observed (Cobs) and the 

predicted (Cpred) concentration values constitutes an important component of population 

analysis. Error introduced to measurements due to intrasubject/interoccasion variability 

(IOV), assay and sample handling/processing is designated as residual error. Different 

residual error models (additive, proportional, power, exponential and combination) were 
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tested. However, the exponential residual error model satisfied the criteria outlined in the 

Selection Model section: 

Cobs,i=Cpred,i  x exp(εi) (9) 

The distributions of the η and ε parameters were assumed to be normal with zero as 

mean and variances equal to ω (omega) and σ (sigma), respectively. 

The area under the curve (AUC) was calculated as the ratio of the amount of AR-67 

lactone administered over the individual population predicted clearance estimate.  

5.2.6 Inter-occasion Variability. 

The study design of the phase I clinical trial involved pharmacokinetic assessment on 

days 1 and 4. Intra-individual variability or inter-occasion variability (IOV) introduced into 

the model on these two occasions (day 1 - occasion 1 and day 4 - occasion 2) was 

tested on all pharmacokinetic parameters for statistical significance. IOV was studied on 

the base model before the inclusion of covariates to avoid attributing changes on 

pharmacokinetic parameters between occasions to individual characteristics. IOV was 

modeled as described by Karlsson et al. [189]. Briefly; IOV was included in the model as 

an exponential term (ηIOV): 

 Pi=Ppop x exp(ηi) x exp(ηIOV,1) (10)  

and Pi=Ppop x exp(ηi) x exp(ηIOV,2) (11), 

where Pi is the estimate for the pharmacokinetic parameter P for subject (i), Ppop is the 

population estimate for the pharmacokinetic parameter P, ηi is the intersubject variability 

for subject (i) in regards to the pharmacokinetic parameter P and ηIOV,1 and ηIOV,2 are the 

inter-occasion variability for subject (i) on occasion 1 (day 1) and on occasion 2 (day 4), 

respectively.  



www.manaraa.com
97 

 

5.2.7 Covariate Model. 

The two-compartment pharmacokinetic structural model presented in the base model 

section was selected as a base model for the covariate model building process (ADVAN 

6 subroutine in NONMEM). The covariates tested were both continuous and categorical 

(Table 5-1). Body surface area (BSA, m2), creatinine clearance (CRCL, mL/min), age 

(AGE, yrs), sex, blood urea nitrogen (BUN, mg/dL), albumin (Alb, g/dL), total bilirubin 

(Tbil, mg/dL), alkaline phosphatase (ALP, U/L), alanine transaminase (ALT, U/L), 

aspartate transaminase (AST, U/L), liver dehydrogenase (LDH, U/L), AR-67 dose level 

that patients were assigned to (DOSELEV, mg/m2/day) and hematocrit (HCT, %). 

Continuous covariates entered in the model were either centered to their mean values or 

normalized to their mean values or standardized to improve model fitting. CRCL was 

calculated using the Cockcroft-Gault equation (12) [190]:  

CRCL (mL/min) = [(140 - Age) x WT x A] / [72 x SrCr] (12),  

where Age is inserted in the equation in years, WT is body weight (kg), A is a constant 

that equals 1 for males and 0.85 for females and SrCr is serum creatinine (mg/dL). 

Covariates were tested for co-linearity by performing linear regression analysis (Table 7-

2). Co-linear covariates were not included in the model as they have been shown to 

inflate the error model [187, 191].  

Covariates were inserted in the model manually [187, 192]. Patient attributes were 

initially evaluated graphically for relationships with V1Eta (intersubject variability 

associated with V1) and CLEta (intersubject variability associated with CL) because 

these two population parameters are of clinical significance and candidate covariates 

were added into the model. Following, covariate relationships with QEta (intersubject 

variability associated with Q) and V2Eta (intersubject variability associated with V2) were 
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explored graphically and additional covariates were added to the model. Only covariates 

that satisfied the criteria described in the Model Selection section were included in the 

model. 

5.2.8 Model Selection. 

Goodness of fit plots, decrease in the objective function value (OFV, -2Log Likehood, -

2LL), satisfactory precision of parameter estimates and model stability (confidence 

intervals of parameter estimates not-including zero) were used to decide model 

superiority. Plots of individual or population predicted versus observed drug 

concentrations were analyzed for closeness to the line of unity and plots of weighted or 

conditional weighted residuals versus individual population predicted drug 

concentrations were analyzed for randomness. Decrease by 3.84 units (for 1 degree of 

freedom) of the OFV was considered statistically significant (p<0.05). In the development 

of the covariate model, decrease in the intersubject variability (ω), in addition to the 

criteria mentioned above, was required for covariate inclusion into the model. The IOV is 

lumped with the residual error (ε) of the model in NONMEM [189]. Therefore, IOV was 

included in the model when a decrease of the sigma was observed and all the 

aforementioned criteria for model acceptance were met. Finally, precision was 

expressed as RSE%, which is produced by the standard error over the parameter value 

Both RSE% and Interindividual variability (IIV) are provided by NONMEM (ref).  

5.2.9 Statistical Analysis. 

Statistical analysis and graphical representation were performed using GraphPad Prism, 

version 5.01 (GraphPad Software Inc., San Diego, USA).  

The unpaired t-test was used to detect statistically significant differences between two 

subject groups (F-test, p>0.05). The non-parametric Mann-Whitney test was used 
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otherwise. Comparisons of more than 2 group means were performed with one-way 

Analysis of Variance (one-way ANOVA) with Bonferroni correction. p<0.05 was selected 

for statistical significance unless otherwise stated. Linearity was tested by performing 

linear regression analysis and the p value indicated whether the slope was statistically 

significantly different from zero (p<0.05). 

Pharmacokinetic parameter estimates were reported as mean ± SD or median (range) 

unless indicated differently.  
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5.3 Results. 

5.3.1 Population Pharmacokinetic Analysis of AR-67 In Plasma. 

This study used pharmacokinetic and pharmacodynamic data on the novel camptothecin 

analogue AR-67 collected in a first-in-humans clinical study [78] to describe the 

population pharmacokinetics of AR-67. Patient characteristics (Table 5-1) were 

incorporated into the model to achieve more accurate estimates of the model 

parameters. 

5.3.1.1 Base Model. 

Similarly to other camptothecin analogues [46], a two-compartment model with first order 

elimination from the central compartment was found to sufficiently describe the plasma 

concentration versus time data for both AR-67 lactone (Figure 7-8) and total drug (Figure 

7-9). Moreover, the lowest value for the OFV function was obtained when the residual 

error was modeled as an exponential term to account for the differences between the 

observed and the predicted concentration data points. Population pharmacokinetic 

analysis for total AR-67 resulted in comparable population parameter estimates as the 

ones obtained previously for the lactone form.  

More specifically, the AR-67 lactone population CL, V1, Q and V2 parameter estimates 

were 25 L/h, 3.7 L, 29.7 L/h and 38.1 L, respectively (Table 5-2). Although these 

estimates were obtained with satisfactory precision (RSE<5.75%), they were 

accompanied by significant intersubject variability. Namely, the coefficients of variation 

of interindividual variability for CL and V1 were 58.6 % and 106 %, respectively. 

Residual variability was estimated to be 32.7 %.   
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Table 5-2. Population pharmacokinetic parameter estimates for the lactone AR-67 base model obtained by performing 
population pharmacokinetic analysis. 

 Population pharmacokinetic 
parameter Mean (RSE,%) IIV (RSE,%) CV(%)* 

Ba
se

 M
od

el
 

CLPOP, θ1 (L/h) 25.0 (3.79) 0.343 (39.1) 58.6 

V1POP, θ2 (L) 3.7 (1.86) 1.13 (30.0) 106.0 

QPOP, θ3 (L/h) 29.7 (5.75) 0.498 (35.5) 70.6 

V2POP, θ4 (L) 38.1 (4.92) 0.415 (22.0) 64.4 

Residual variability, ε 
 

0.107 (16.7) 32.7 

* Coefficient of variation for interindividual variability of the population pharmacokinetic 
parameter,# change in the objective function value after the addition of the relevant 

covariate , IIV: Inter-individual variability, OFV: Objective function value, POP: 
population pharmacokinetic parameter 
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Additionally, clearance, V1, Q and V2 for total AR-67 were found to be 25.8 L/h, 2.9 L, 

32.5 L/h and 28.8 L, respectively (Table 5-3). Clearance was the population parameter 

with the lowest intersubject variability (28.6 %) while V1 was the population parameter 

with the highest intersubject variability (119 %) among the studied population 

parameters. Residual variability (27.7 %) was of the same magnitude as the ε estimated 

for the lactone. 
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Table 5-3. Population pharmacokinetic parameter estimates for the total AR-67 base model obtained by performing 
population pharmacokinetic analysis. 

 

 

 

 Population pharmacokinetic 
parameter Mean (RSE,%) IIV (RSE,%) CV(%)* 

Ba
se

 M
od

el
 

CLPOP, θ1 (L/h) 25.8 (2.2) 0.082 (30.6) 28.6 

V1POP, θ2 (L) 2.9 (27.0) 1.42 (28.9) 119.0 

QPOP, θ3 (L/h) 32.5 (5.3) 0.34 (40.3) 58.3 

V2POP, θ4 (L) 28.8 (3.6) 0.156 (32.2) 39.5 

Residual variability, ε 
 

0.077 (12.7) 27.7 

* Coefficient of variation for interindividual variability of the population pharmacokinetic 
parameter,# change in the objective function value after the addition of the relevant 

covariate , IIV: Inter-individual variability, OFV: Objective function value, POP: 
population pharmacokinetic parameter 
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Diagnostic plots showed a symmetrical distribution around the line of unity when 

individual predicted or population predicted concentration values were plotted against 

observed concentration values for either lactone or total AR-67 (Figure 5-1, A and B, 

respectively). Additionally, the conditional weighted residuals were randomly distributed 

when plotted versus individual population predicted lactone or predicted total drug 

concentration (Figure 7-8).  
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Figure 5-1. Diagnostic plots of population pharmacokinetic base models 
developed for AR-67 lactone and total AR-67. 

AR-67 lactone (A) and total AR-67 (B) individual (IPRE, circle) or population 
(PPRE, asterisk) predicted versus observed concentration in plasma. Individual 
and population predicted concentration values were obtained by studying the 
population pharmacokinetics of AR-67 administered in cancer patients (n=19) with 
solid tumors using a two-compartment structural model to fit the data and are 
presented in panels A and B for lactone and total AR-67, respectively. The line of 
Unity and the LOWESS curves for IPRE and PPRE were added for evaluation of 
goodness of fit. AR-67 plasma concentrations are given in ng/mL. 
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5.3.1.2 Inter-occasion Variability. 

To avoid allergic reactions to the cremophor-EL-containing formulation of AR-67, 

patients were co-administered the CYP3A inducer dexamethasone [78, 193]. 

Additionally, in vitro studies have demonstrated the CYP3A4/5-mediated 

biotransformation of AR-67 lactone [79]. Therefore, the contribution of the potentially 

dexamethasone-induced clearance of AR-67 to the residual variability was evaluated by 

modeling IOV. However, no decrease on the OFV, CLEta or ε was observed when IOV 

on CL was studied (data not shown). Additionally, model instability was observed when 

IOV on V1, Q and V2 was included in the model (data not shown). Thus, IOV was not 

included in the model developed for either lactone or total AR-67.     

5.3.1.3 Covariate Model. 

As indicated in the materials and methods section, covariates that correlated with either 

CLEta or V1Eta were given priority and were incorporated into the model first. 

AR-67 Lactone Covariate Model (Table 5-4).  More specifically, although dose-levels as 

a covariate showed a weak correlation with CLEta and V1Eta of the lactone form, it did 

not meet the criteria of statistical significance (ΔOFV>3.84) and was not included in the 

model. Among BUN, age, AST and sex, only BUN incorporation into the model 

describing the population pharmacokinetics of the lactone form was successful (ΔOFV=-

5.16, p<0.05) and resulted in decrease of the intersubject variability of V1 by 23.3 %. 

Interestingly, incorporation of BUN appeared to account for differences on population 

parameter estimates of V1 between men and women (*p=0.0043) although BUN values 

did not differ significantly (p=0.48) between the two groups in our study (data not 

shown). Following, BSA was identified as an important determinant of V2 (ΔOFV=-5.26, 

p<0.05) and accounted for 10.6 % of intersubject variability of V2. Considering sex as a 
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covariate, on either Q or V2, resulted in model instability and was not pursued further. To 

evaluate the developed lactone covariate model, the V1 and V2 pharmacokinetic 

parameters were calculated for a typical patient (BUN=15 mg/dL, BSA=1.86m2) using 

the model derived equations (Table 5-4). The V1 population estimate for a typical patient 

was found 4.9 L which is included in the 95 % confidence interval of the base model V1 

population estimate (2.4 - 6.1 L) and the V2 population parameter estimate (37.6 L) 

approximated the V2 estimate obtained with the base model (38.1 L). 
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Table 5-4. Population pharmacokinetic parameter estimates for the lactone AR-67 covariate model obtained by performing 
population pharmacokinetic analysis. 

 Population pharmacokinetic 
parameter Mean (RSE,%) IIV (RSE,%) CV(%)* Change in OFV# p value 

C
ov

ar
ia

te
 M

od
el

 

CLPOP, θ1 (L/h) 25.0 (3.85) 0.339 (39.8) 58.2 
  

V1, θ2 1.35 (17.3) 0.684 (25.9) 82.7 
  

V1POP (L) EXP(θ2 x (BUN/12.7)) 
  

-5.16 <0.05 

QPOP, θ3 (L/h) 30.0 (5.85) 0.49 (35.5) 70.0 
  

V2, θ4 5.2 (23.8) 0.289 (21.8) 53.8 
  

θ5 1.08 (30.6) 
    

V2POP (L) θ4 x EXP((BSA)^θ5) 
  

-5.26 <0.05 

 Residual variability, ε  0.107 (17.0) 32.7   

* Coefficient of variation for interindividual variability of the population pharmacokinetic parameter,# change in the objective 
function value after the addition of the relevant covariate , IIV: Inter-individual variability, OFV: Objective function value, POP: 

population pharmacokinetic parameter 
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Total AR-67 Covariate Model (Table 5-5). Covariates were considered for the 

development of a total AR-67 covariate model. The only covariate that showed a 

noticeable relationship with CLEta was BSA. Although incorporation of BSA into the 

model was justified based on the model superiority criteria (ΔOFV=-4.69, *p<0.05), it 

accounted for only 3.5 % of intersubject variability of CL. Age, BUN and sex were 

selected for further testing when investigating for patient attributes to explain the high 

(119 %) intersubject variability of V1. Age and BUN were incorporated in the model and 

led to a statistically significant decrease of the OFV. However, they were also associated 

with model instability and, therefore, were abandoned. Contrary, sex was evaluated as a 

significant determinant of V1 because it resulted in a statistically significant decrease of 

OFV (ΔOFV=-4.29, *p<0.05) and explained 24.3 % of the V1 intersubject variability. 

Interestingly, addition of BSA and sex in the model, revealed a relationship between 

V1Eta and CRCL. However, the latter was not incorporated into the model because of 

co-linearity with BSA (Table 7-2). Finally, although dose-levels and sex appeared to 

correlate with QEta and V2Eta, boundary issues on estimates of population parameters 

prohibited inclusion of additional covariates in the final model. The total AR-67 

pharmacokinetic parameters for a typical patient were calculated using the covariate 

model documented on Table 5-5. Clearance was estimated to be 25.2 L/h (BSA=1.86m2) 

while V1 was 2.0 L for women and 5.8 L for men as a result of including sex into the 

model as a covariate.   

 



www.manaraa.com

 

110 

 
 

Table 5-5. Population pharmacokinetic parameter estimates for the total AR-67 covariate model obtained by performing 
population pharmacokinetic analysis. 

 Population pharmacokinetic 
parameter Mean (RSE,%) IIV (RSE,%) CV(%)* Change in OFV# p value 

C
ov

ar
ia

te
 M

od
el

 

CL, θ1 10.8 (16.3) 0.063 (26.6) 25.1 
  

θ2 0.456 (43.6) 
    

CPOPL, (L/h) Θ1 x EXP((BSA) x θ2) 
  

-4.69 <0.05 

V1POP,F, θ3 (L), Female 

V1POP,M, θ4 (L), Male 

2.0 (48.4) 

5.8 (18.5) 
0.897 (38.2) 94.7 -4.29 <0.05 

QPOP, θ5 (L/h) 31.5 (5.3) 0.305 (42.6) 55.2 
  

V2POP, θ6 (L) 28.5 (3.55) 0.146 (32.7) 38.2 
  

Residual variability, ε 
 

0.077 (13.2) 27.8 
  

* Coefficient of variation for interindividual variability of the population pharmacokinetic parameter,# change in the objective 
function value after the addition of the relevant covariate , IIV: Inter-individual variability, OFV: Objective function value, POP: 

population pharmacokinetic parameter 
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Diagnostic plots (Figure 5-2, A and B, for lactone and total AR-67, respectively) of 

individual predicted or population predicted concentration values plotted against 

observed concentration values showed distribution around the line of unity. However, 

only subtle improvements were observed in the generated plots when compared to the 

respective base model ones (Figure 5-1, A and B, for lactone and total AR-67, 

respectively).  
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Figure 5-2. Diagnostic plots of population pharmacokinetic covariate models 
developed for AR-67 lactone and total AR-67. 

AR-67 lactone (A) and total AR-67 (B) individual (IPRE, circle) or population 
(PPRE, asterisk) predicted versus observed concentration in plasma. Individual 
and population predicted concentration values were obtained by studying the 
population pharmacokinetics of AR-67 administered in cancer patients (n=19) with 
solid tumors using a two-compartment structural model to fit the data and are 
presented in panels A and B for lactone and total AR-67, respectively. The line of 
Unity and the LOWESS curves for IPRE and PPRE were added for evaluation of 
goodness of fit. AR-67 plasma concentrations are given in ng/mL. 
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5.3.2 Clinical Determinants of AR-67 Clearance And Toxicity. 

Clearance is a pharmacokinetic parameter of clinical relevance as it is directly related to 

exposure and, therefore, efficacy and toxicity. In vitro studies and clinical data [78] 

strongly suggest that AR-67 is eliminated via metabolism by the CYP1A1, 3A4, 3A5, 

UGT1A1, UGT1A3, UGT1A7 and UGT1A8 metabolic enzymes localizing in the liver and 

the gut [79]. Therefore, factors that could have an impact on the activity of the 

aforementioned metabolic enzymes in the phase I oncology patients were studied here 

with the use of the previously developed covariate-free population pharmacokinetic 

models.  

5.3.2.1 Smoking, Obesity And Tumor Type. 

Smoking has been reported to alter the disposition and elimination profile of xenobiotics 

by inducing the metabolic activity of CYP and UGTs [194]. Against this background, the 

effect of smoking on exposure to lactone was tested, but no differences were detected 

between study groups (434.2 ng*h/mL ± 259.0 vs 415.8 ng*h/mL ± 361.6, p=0.90) 

(Figure 5-3). Similar results were obtained when clearances of total AR-67 between non-

smokers and smokers were compared (data not shown).  
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Figure 5-3. Scatter plots depicting the relationships between exposure to AR-67 
lactone expressed as AUC and smoking status.  

The AUC values were calculated as described in the materials and methods 
section. Statistically significant differences between subject groups were detected 
by performing the Unpaired t-test/Mann-Whitney test (NON-SMOKERS Vs 
SMOKERS). P<0.05 was considered statistically significant (*p<0.05). Only 
statistically significant differences are indicated. AUC values are given as 
ng*hr/mL. Broken line, geometric mean. AUC: Area Under the Curve. 
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Although numerous studies have shown an interaction between obesity and metabolism, 

high body fat has been reported to either induce or inhibit the metabolic activity of CYP 

and UGTs [195]. We attempted to identify differences in the elimination profile of AR-67 

among groups of normal weight, overweight and obese patients. One-way ANOVA 

showed that lactone clearances did not differ among the three study groups (p=0.09) 

(Figure 5-4). Notably, the lactone clearance of a severely obese patient (BMI=73.6 

kg/m2) was 31.3 L/h, within the range of clearances of normal weight patients (23-39 

L/h).      
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Figure 5-4. Scatter plots depicting the relationship between individual population 
predicted clearance estimates of AR-67 lactone and BMI as an obesity index.  

The individual population clearance estimates were obtained after performing 
population analysis on pharmacokinetic data collected during the AR-67 phase I 
clinical trial (n=25) as described in the materials and methods section. Patients 
were divided into 3 groups based on their BMI: normal weight (BMI<25), 
overweight (25<BMI<30) and obese (BMI>30). Statistically significant differences 
between the 3 groups were detected by performing one-way Analysis of Variance 
(Bonferroni correction for multiple comparisons). p<0.05 was considered 
statistically significant (*p<0.05). Only statistically significant differences are 
indicated. Clearance and BMI values are given as L/h and kg/m2, respectively. 
Broken line, geometric mean. BMI: Body Mass Index. 
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Finally, the potential of the elimination of AR-67 being compromised due to the presence 

of tumor in liver or gut was tested. Neither the lactone (p=0.17) nor the total AR-67 

(p=0.71) clearance differed significantly between patient groups positive and negative for 

liver tumor (Figure 7-9). The same result was obtained when patients were arranged into 

groups based on presence or absence of gut tumor (Figure 7-9).     

5.3.2.2 Effect Of Performance Status On AR-67 Clearance And Toxicity. 

Population pharmacokinetic analyses have indicated performance status as an important 

covariate of camptothecin clearance (Table 1-1). In our study, patient groups of different 

performance statuses (PS=0 vs PS=1 vs PS=2) were not statistically significantly 

different in regard to their lactone clearances (data not shown, p=0.80). 

Additionally, the effect of the performance status on toxicity was studied (Figure 5-5). As 

hematological toxicities, including neutropenia and thrombocytopenia prevented dose 

escalation in the AR-67 phase I clinical trial, % decreases of ANC, WBC, Hb and PLT 

were selected as toxicity endpoints. Our analysis showed that patients with worst 

performance status at baseline (PS=2) had statistically (*p<0.05) higher decreases in 

ANC, WBC and PLTs when compared to patients of PS=0 (Figure 5-5, A, B and D) 

increasing the potential of experiencing severe hematological toxicity.     
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Figure 5-5. Scatter plots of the effect of performance status on the AR-67 toxicity 
profile.  

Performance status (PS) is presented versus the %decrease from baseline of ANC 
(A), WBC (B), Hb (C) and PLT (D). The pharmacodynamic data (ANC, WBC, Hb and 
PLT) were collected on days 1, 8, 15 and 21 of cycle 1 from patients (n=25) 
participating in the AR-67 phase I clinical trial. Statistically significant differences 
between groups (PS=0, PS=1 and PS=2) were detected by performing one-way 
Analysis of Variance (Bonferroni correction for multiple comparisons). P<0.05 was 
considered statistically significant (*p<0.05). Only statistically significant 
differences are indicated. ANC and Hb values are presented in 103/uL and g/dL, 
respectively while PLT and WBC values are 103/mm3. Broken line, geometric 
mean. PS: Performance Status, ANC: Absolute Neutrophil Count, WBC: White 
Blood Cells, Hb: Hemoglobin, PLT: Platelets. 
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5.3.2.3 Effect Of Body-size Measures On AR-67 Clearance. 

Anticancer agents are typically dosed based on the patients’ somatometric 

characteristics to account for the intersubject variability on the disposition and 

elimination of the drug [181]. Notably, no relationship was established between lactone 

clearance and any of the tested body-size measures, namely BSA, LBW, IBW, AIBW 

and BMI, using linear regression analysis (Figure 5-6). Additionally, when the previously 

mentioned clearance estimates were corrected with body-size measures, no 

improvement of the intersubject variability associated with CL was observed (Table 7-3).    
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Figure 5-6. Relationship of individual population lactone clearance estimates and 
body-size measures.  

Clearance estimates were obtained using a covariate-free population 
pharmacokinetic model described previously (n=25) and the body-size measures, 
namely BSA (A), LBW (B), IBM (C), AIBW (D) and BMI (E), were calculated as 
described in the materials and methods section. P<0.05 is indicative of slope 
significantly different from zero. Clearance, BSA, LBW, IBW, AIBW and BMI values 
are given as L/h, m2, kg, kg, kg and kg/m2, respectively. BSA: Body Surface Area, 
LBW: Lean Body Weight, IBW: Ideal Body Weight, AIBW: Adjusted Ideal Body 
Weight, BMI: Body Mass Index. 
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5.4 Discussion. 

Here, we studied the population pharmacokinetics of lactone and total AR-67 in plasma 

obtained from patients participating in a phase I clinical trial. Covariates were tested with 

the intent of decreasing the intersubject variability associated with the population 

parameter estimates. Our analysis showed that BUN and BSA accounted for 23.3 % and 

10.6 % of interindividual variability of V1 and V2 in the lactone model, respectively. 

Moreover, BSA and sex were identified as determinants of total AR-67 CL and V1, 

respectively, and were incorporated in the total AR-67 model. Smoking and obesity had 

no effect on the pharmacokinetic profile of AR-67. Additionally, although performance 

status did not impact drug clearance, it did correlate with increased hematological 

toxicity. Finally, our analysis showed that normalization of AR-67 clearance to different 

body-measures, including BSA, did not result in decreased intersubject variability for this 

population parameter. 

As AR-67 is undergoing clinical development, it is useful to establish a pharmacokinetic 

model to describe the AR-67 disposition and elimination as well as potential sources of 

intersubject variability. A two-compartment structural model was used in the population 

analysis of lactone and total AR-67. Since, similar pharmacokinetic parameter estimates 

were obtained using both models for either lactone or total AR-67 (Table 5-2 and 5-3), 

these models can be used interchangeably to describe AR-67 population 

pharmacokinetics. The total body clearance for total AR-67 was 14.4 L/h/m2 ± 3.3 (Table 

5-3) which is comparable to clearance values obtained previously (non-compartmental 

analysis, 14.5 L/h/m2 ± 3.1 on day 1 and 17.4 L/h/m2 ± 5.2 on day 4) [78].  

In vitro studies and clinical data have suggested that AR-67 lactone could undergo 

metabolism in the liver and the gastrointestinal tract [78, 79]. Thus, the effect of liver 

enzymes and other indicators of liver function, such as albumin and bilirubin, were tested 
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as covariates on lactone CL. However, their inclusion in the model was not justified as 

they did not explain the observed high variability (58.6 %). Surprisingly, incorporation of 

BUN, an indicator of renal function, into the lactone covariate population model 

accounted for a significant percentage (23.3 %) of intersubject variability associated with 

V1 (Table 5-4). We attempted to attribute this finding to fluid retention, as some patients 

were clinically diagnosed with edema at study entry and were being treated with 

diuretics. However, BUN values were not statistically significantly different between 

patients with and without edema (p=0.47) (Table 5-1). Additionally, although the 

difference in BUN values between men and women was not statistically significant 

(p=0.48), incorporation of BUN eliminated gender differences on V1 (base model: 

*p=0.03 vs covariate model: p=0.08). This is a very interesting finding as BUN has not 

been assessed in previous camptothecin covariate analyses and, therefore, requires 

further investigation.  

Moreover, BSA was considered for V2 (Table 5-4) potentially reflecting differences in 

body size and, therefore, differences in the extent of distribution of lipophilic AR-67 

lactone possibly in adipose tissue. However, the difference in V2 estimates between 

obese (BMI>25) and non-obese (BMI<25) patients was not statistically significant 

(p=0.80), which indicated that AR-67 lactone was not distributing preferentially into fat 

tissues. Interestingly, V2 estimates differed between sexes (female vs male, 25.2 L ± 9.0 

vs 34.9 L ± 10.8, *p=0.02). Taking into consideration that AR-67 is primarily eliminated 

through the liver and the liver volume, which is higher in men than in women, has been 

found to correlate with BSA [196, 197], we hypothesize that the association between 

BSA and V2 observed in our study is suggestive of AR-67 partitioning preferentially in 

the liver tissue from where it is being cleared efficiently.  
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BSA was also identified as a determinant of total body clearance of total AR-67 (ΔOFV=-

4.69, p<0.05) (Table 5-5). Similar results have been reported for topotecan in pediatric 

patients [46] and irinotecan [70, 72]. However, Klein et al. failed to observe a relationship 

between BSA and irinotecan CLEta [71]. Moreover, Mathijseen et al., 2002 

demonstrated that normalizing irinotecan clearance to body-size measures did not 

decrease the observed intersubject variability of this pharmacokinetic parameter 

introducing the concept of flat or fixed dosing for irinotecan [185].  In our study, 

normalization of lactone and total AR-67 total body clearance to BSA, LBW, IBW, AIBW 

and BMI did not have any effect on the variability observed with this pharmacokinetic 

parameter (Table 7-3). Additionally, when included in the covariate model, BSA 

accounted for only a small portion (3.5 %) of the intersubject variability observed with 

total body clearance (Table 5-5). These findings considered together question the 

inclusion of BSA on CL into the covariate model as well as dosing AR-67 based on BSA.  

Previously, body surface area and weight were found to be determinants of V1 of both 

irinotecan [71, 198] and topotecan [47]. In our study (Table 5-5), considering sex on V1 

resulted in significant (~25 %) decrease in the intersubject variability. Since plasma 

volume is higher in men than in women and correlates with body-size measures [199], 

findings reported here are aligned with the aforementioned studies. Moreover, although 

the lactone is the predominant species in the plasma, it is anticipated that the 

pharmacokinetic behavior of total AR-67 carries attributes of both the lactone and the 

carboxylate form. Therefore, we reason that the importance of sex on the total AR-67 V1 

reflects confinement of the carboxylate in the plasma compartment (V1) as a result of its 

hydrophilicity and charge.  

AR-67 had displayed noteworthy lactone stability in blood in vitro [38] and was expected 

to partition in red blood cells due its lipophilicity. Moreover, Loos et al. demonstrated that 
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topotecan partitioning into the red blood cells resulted in lower clearance rates of the 

camptothecin from the plasma of women than men [200, 201]. However, contrary to the 

findings by Loos et al. [200, 201], in our study the hematocrit values did not differ 

between men and women (p=0.78) and the plasma lactone clearance was not found to 

be gender-dependent (p=0.36). Therefore, considering HCT as a covariate in the lactone 

population model did not decrease the CL intersubject variability.  

The effect of smoking on AR-67 pharmacokinetics and toxicity profile was also of interest 

as tobacco exacerbates the activity of metabolic enzymes such as CYP1A1, CYP1A2 

and UGTs [194, 202-204] that have been identified as potentially playing a role in the 

elimination of AR-67 in the liver and gut. Although van der Bol et al. showed that 

exposure to irinotecan and SN-38 was lower in smokers than patients that did not smoke 

[205], our analysis indicated that exposure to AR-67 did not differ significantly (p<0.05) 

between smokers and non-smokers (Figure 5-3).  

Moreover, studies have demonstrated increased metabolic activity of CYP1A2 and 

UGTs, but not of CYP3A4 in obese individuals [195, 206]. We showed that normal-

weight and obese patients cleared AR-67 at the same rate (Figure 5-4). In vitro studies 

on AR-67 metabolism indicated high affinity between AR-67 lactone and UGT1A7 and 

UGT1A8. In absence of any studies associating UGT1A7 or UGT1A8 metabolic activity 

with obesity, we speculate that UGT1A7/8 metabolic activity is unaffected in obese 

individuals or that the effect of the induced UGTs on the metabolic profile of AR-67 was 

negated by the decrease in the metabolic activity of CYP3A4 as a result of the 

considerable metabolic capacity of the latter. It is also possible that the iv administration 

of AR-67 masked the obesity-related induction of UGT activity as UGT1A7/8 are 

selectively expressed in the gut wall.   
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Performance status had been related to irinotecan, SN-38 and topotecan clearance in 

population covariate models developed previously (Table 1-1). Our analysis did not 

reveal statistically significant differences on the population parameter estimates when 

patients were sorted by performance status (data not shown, p=0.08). Moreover, 

Comella et al. reported that patients with PS≥1 ran a higher risk of experiencing grade 4 

neutropenia after irinotecan administration [207]. Similarly, in our study, the patient 

group with the worst performance status (PS=2) appeared to be more susceptible to 

hematological toxicity in our study (Figure 5-5). This finding is of great significance for 

the frail population of cancer patients and needs to be verified in a larger population 

sample.   

Despite the intensive study presented here on the factors that could have an impact on 

AR-67 clearance, intersubject variability of the pharmacokinetic parameters studied 

remained high in a final covariate model (Table 5-4 and 5.5). More specifically, 

intersubject variability of CL was 58.2 % and 25.1 % for lactone and total AR-67, 

respectively, in the developed covariate models. Preclinical studies have suggested that 

the liver-specific uptake transporters OATP1B1 and OATP1B3 and the efflux 

transporters MDR1 and BCRP could play an important role on the disposition and 

elimination of AR-67 (manuscript in preparation),[122]. Moreover, a plethora of metabolic 

enzymes have exhibited affinity for the lactone form [79]. Therefore, we reason that 

differences in the expression levels or function of the aforementioned transporters and 

metabolic enzymes as well as variability on the degree of induction or inhibition of those 

complex systems by co-administered drugs or by health conditions of the study 

participants could account for the unexplained variability we are reporting. Future studies 

should focus on exploring relationships between AR-67-induced toxicity and genetic 
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polymorphisms of the aforementioned transporters and metabolic enzymes [68, 69, 208-

212].  

In conclusion, population pharmacokinetic models were developed for AR-67 lactone 

and total AR-67 using the nonlinear mixed effects approach. The pharmacokinetic 

parameter estimates did not differ between the two models suggesting similar 

pharmacokinetic behavior for lactone and total AR-67. BUN, BSA and sex were 

identified as covariates explaining intersubject variability within the studied patient 

population and were incorporated into the lactone and total AR-67 covariate models. 

Patients with unfavorable performance status at study entry did seem to suffer high 

grade hematological toxicity and might require dose adjustments or incorporation of 

hematopoietic growth factors in their standard treatment. Finally, based on our analysis, 

flat or fixed dosing of AR-67 warrants further investigation as AR-67 clearance was 

found to be independent of body-size measures. As this is the first population 

pharmacokinetic analysis on AR-67, more extensive studies need to take place to 

identify individual predictors of AR-67 elimination and evaluate their clinical significance. 
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6. Chapter 6: Summary - Future Studies 

AR-67 is a lipophilic 3rd generation camptothecin analogue with considerable stability of 

its pharmacologically active lactone form and its biological activity in animal models. 

Preclinical studies indicated noteworthy cytotoxicity in vitro [74] and promising antitumor 

activity using xenografts [76, 77]. In view of those results, AR-67 advanced to clinical 

trials. In the recently completed phase I clinical trial, stable disease and prolonged partial 

response were observed [78]. Therefore, the promising findings obtained in the 

preclinical and clinical level underlying the efficacy of this camptothecin analogue in 

cancer encourage further development of AR-67.    

Transporter proteins localizing at the membrane of tumor cells have been implicated in 

resistance or chemosensitivity often observed with anticancer agents. Therefore, we 

designed studies to determine the effect of overexpression of efflux and uptake 

transporters would have on AR-67 cytotoxicity in vitro. Using cell lines over-expressing 

the efflux transporters BCRP and MDR1, we demonstrated that AR-67 is a substrate for 

both BCRP and MDR1. Our studies also indicated that over-expression of these efflux 

transporters conferred resistance to AR-67 in vitro.  

Studies have shown that BCRP and MDR1 expression in human tumors could result in 

drug resistance and therapy failure [85, 97-103]. Therefore, it would be interesting to 

examine the effect of BCRP and MDR1 over-expression on the antitumor activity of AR-

67 in vivo using xenograft models. Our hypothesis is that tumor-bearing animals that 

over-express BCRP or MDR1 will show lower response rate than animals with tumors 

that do not express the efflux transporter. To address this question, the development of 

a xenograft tumor model using mock- and BCRP/MDR1-transfected cell lines is required. 

To improve the predictability of the study, human tumor xenografts screened for BCRP 

or MDR1 expression should also be considered as an option as they represent more 
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accurately the heterogeneity of human tumors in regards to transporter expression [164]. 

Additionally, quantifying the amount of AR-67 at the tumor site would also be of interest. 

That way we will obtain a better understanding on the functional activity of the 

transporter in vivo and will be able to correlate that information with survival data. 

Studies report increased expression of OATP1B3 in tumor tissues [110, 112, 113]. 

Based on our study results using OATP1B3 over-expressing cell lines, AR-67 

cytotoxicity is mediated by the lactone form which is favored intracellularly potentially 

because of protein binding, partitioning into membranes and/or distribution in organelles 

with acidic environment such as the peroxisomes. Increased membrane expression of 

the OATP1B3 transporter did not sensitize cells to AR-67 treatment in vitro. Therefore, 

our study suggests no therapeutic advantage of AR-67 administration in patients that 

over-express OATP1B3 in their tumor tissue.  

Previous studies on camptothecins using xenografts models have demonstrated that 

low-dose protracted dosing schedules are more efficacious than intense high-dose 

schedules [123, 125-128].  Similar results were obtained for AR-67 when dosed 

following varying dosing schedules. Further exploration of the underlying reasons for 

these findings using NSCLC xenografts allowed us to conclude that the 

pharmacokinetics of AR-67 at the tumor site were associated with lower elimination rates 

than the respective ones in the plasma. Moreover, Top1 kinetics was schedule-

dependent. More specifically, groups that received low-doses of AR-67 for an extended 

period of time and responded better to AR-67 treatment showed detectable expression 

levels of Top1 in the tumor tissue. We concluded that low-dose protracted dosing 

schedules that do not deplete Top1 expression at the tumor site result in higher 

response rates than more intense dosing schedules.  
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Following, a pilot human trial was conducted to provide an insight on the safety and 

toxicity of AR-67 given following a protracted dosing schedule. Although the type of the 

toxicities observed during this pilot study were similar to the ones identified in the phase 

I clinical trial, dose de-escalation was necessary. Therefore, the recommended dose for 

future studies on AR-67 protracted dosing is 5.5 mg/m2/day given as an 1-hr infusion on 

days 1, 4, 8, 12 and 15 every 21 days. Moreover, sampling the tumor in patients 

participating in the study twice within 24 hours after the drug administration on day 1 was 

proven feasible. Interestingly, similarly to the preclinical studies, drug accumulation in 

the tumor was observed in one of the study participants. Although this finding is 

encouraging, it is imperative to examine the AR-67 tumor pharmacokinetics in a larger 

group of patients with different cancer types as the physiology of the tumor could also 

play a role in the tumor distribution of the camptothecin at the site of action. 

Finally, the experience obtained during this proof-of-concept study is one of the most 

important aspects of this study in terms of designing future trials. The amount of tumor 

tissue collected and limitations associated with the bioanalytical method used to quantify 

AR-67 in the tumor tissue were essential issues [137]. Moreover, although we were able 

to detect Top1 in the tumor, the enzyme kinetics in the presence of AR-67 requires 

further evaluation. Our work highlights the importance of acquiring a baseline 

measurement of Top1.       

The first pharmacokinetic population model on AR-67 was presented here. It was 

developed by analyzing pharmacokinetic data collected in the AR-67 phase I clinical trial 

[78]. The analysis was performed using the nonlinear mixed effects theory [130]. 

Covariate analysis [192] did allow the incorporation of patient attributes into the 

population pharmacokinetic model. However, their clinical relevance needs to be 

evaluated further in a larger population.  
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More specifically, the phase I clinical trial data and in vitro studies have demonstrated 

that AR-67 is being metabolized in the liver and the gut while its renal elimination is 

limited [78, 79, 81]. However, no liver-specific covariates were identified as determinants 

of AR-67 clearance and smoking or obesity did not have any impact on drug clearance 

although they have been reported to interfere with the metabolic activity of enzymes [79, 

194, 195, 205]. Future studies that compare the pharmacokinetic parameters such as 

clearance and AUC between cancer patients with normal liver function and cancer 

patients with impaired liver function will provide us with a definitive answer on whether or 

not patients with liver dysfunction run increased risk for toxicity when given AR-67. This 

finding could be of extreme importance as most of cancer types are associated with liver 

metastases that could result in liver impairment that render dose adjustments necessary.  

Studies presented here have demonstrated the interaction between AR-67 and a 

number of uptake and efflux transporters and metabolic enzymes that allow us to obtain 

a better understanding of the disposition and elimination of AR-67 (Figure 6-1). More 

specifically, AR-67 carboxylate has been identified as a substrate for the liver-specific 

transporters OATP1B1 and OATP1B3 (Chapter 3). Preclinical work by Adane et al. [75] 

indicates that the carboxylate form is being eliminated 3.5-fold faster than the lactone 

form. Therefore, it is hypothesized that those two uptake transporters might play a 

fundamental role on the elimination of AR-67. Horn et al [79] demonstrated that AR-67 

lactone can be biotransformed in vitro by the metabolic enzymes CYP3A4/5 and 

CYP1A1/2 and UGT1A1/3 that localize in the liver. We reason that the lactone that 

escaped metabolism and its metabolic products have the potential of being transferred in 

the bile by BCRP and MDR1. While in the gut, we reason that the lactone is being 

released from its glucuronide form as a result of the bacterial β-glucuronidase activity 

and passively diffuses into the enterocytes where it is being effectively metabolized by 
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UGT1A7/8 and CYP3A4/5 [79]. Alternatively, AR-67 and its metabolites have the 

potential of being effluxed back into the lumen by MDR1 and BCRP. In conclusion, the 

disposition and elimination AR-67 pathways are of great complexity.   

Against this background, we reason that the pharmacogenetics of AR-67 warrant further 

study. We hypothesize that differences in the expression levels and in the functional 

activity of the previously mentioned transporters (Figure 6-1) could account for part of 

the unexplained variability observed with the developed population pharmacokinetic 

model. Additionally, similarly to other camptothecins [68, 69], polymorphisms of 

metabolic enzymes (Figure 6-1) localized in the liver or the gut could influence 

disposition and elimination of AR-67. For instance, findings by Horn et al [79] suggest 

that the intense metabolism that AR-67 undergoes in the gut is the reason why no 

diarrhea was reported by the phase I clinical trial patients [78]. Therefore, it would be 

interesting to monitor patients with genetic variations on UGT1A7 and UGT1A8 for 

gastrointestinal toxicity after AR-67 administration. 

 Additionally, early studies on the metabolism and transport of irinotecan and its 

metabolites showed that MRP2 plays a fundamental role on irinotecan and SN-38 

elimination by mediating the transfer of their glucuronides into the bile [66, 213]. 

Therefore, potential interaction between MRP2 and AR-67 needs to be explored in vitro 

and the clinical relevance of known MRP2 polymorphisms on the disposition and 

elimination of AR-67 needs to be studied should there be an interaction identified in vitro.  

Finally, AR-67 displayed noticeable antitumor activity in a mouse glioma model system 

[77]. Considering camptothecins have been used to treat patients with brain tumors with 

documented success [214, 215], AR-67 should be evaluated as an alternative option for 

patients with brain tumors not responding to available treatments. Additionally, studies 
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have shown that anticonvulsant agents received by cancer patients for seizure control 

interfere with the pharmacokinetics of camptothecins that undergo hepatic elimination 

[58, 214, 216-218]. Therefore, the potential for drug-drug interactions between AR-67 

and anticonvulsants needs to be explored further. 

In conclusion, the development of AR-67 has been proven to be challenging. Although 

the work presented here has contributed to the development of this camptothecin 

analogue, the later remains a work in progress. 
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Figure 6-1. Hypothetical schematic including transporters and enzymes involved 

in the disposition and elimination of AR-67. 
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7. Appendix 
 

 

Figure 7-1: Expression and functional validation of BCRP transporter in MDCKII-
pcDNA/BCRP cells.  

Immunoblotting analysis of lysates prepared from (A) MDCKII-pcDNA/BCRP cells 
to evaluate the BCRP expression. Actin was used as a loading control. (B) 
MDCKII-pcDNA/BCRP cells were incubated with Hoechst 33342 (2 µM) for 45 min 
(open bars). The inhibitory effect of 4 µM of GF120918 in the transporter-mediated 
efflux of (B) Hoechst 33342 was also assessed (solid bars) as described in the 
Materials and Methods section. Data are represented as mean (n=3) ± SD. 
Statistical analysis was performed using unpaired and paired t-test, statistical 
significance for * p<0.05 and ** p<0.01. 
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Figure 7-2: Expression and functional validation of MDR1 transporter in OVCAR-
8/NCI/ADR-RES cells.  

Immunoblotting analysis of lysates prepared from (A) OVCAR-8/NCI/ADR-RES 
cells to evaluate the MDR1 expression. Actin was used as a loading control. (B) 
Effect of Vinblastine on OVCAR-8 and NCI/ADR-RES cell lines. Cells were treated 
with Vinblastine for 72 hours before assessing cell viability as described in the 
Materials and Methods section. The estimated IC50 values were 0.099 nM (0.086-
0.116) and 43.9 nM (0.75-2,563) for OVCAR-8 and NCI/ADR-RES cells, respectively. 
(C) Effect of SAHA on OVCAR-8 and NCI/ADR-RES cell lines. Cells were treated 
with SAHA for 72 hours before assessing cell viability as described in the 
Materials and Methods section. The estimated IC50 values were 40.79 μM (21.78-
76.38) and 418.5 μM (59.61-2939) for OVCAR-8 and NCI/ADR-RES cells, 
respectively when exposed to SAHA. Data are represented as mean (n=3) ± SD. 
Data analysis to obtain IC50 values was performed using nonlinear regression. IC50 
values (μM) are reported as mean (95 % confidence interval). 
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Table 7-1: Papp and efflux ratio values describing the efflux activity of BCRP for 
AR-67 lactone in polarized MDCKII cells, in the presence and absence of the BCRP 
inhibitor GF120918. 

 

Control GF120918 (5μM) 

MDCKII-pcDNA MDCKII-BCRP MDCKII-
pcDNA MDCKII-BCRP 

Papp,A>B 2.18 ± 0.26 0.08 ± 0.02 1.33 ± 0.07 2.96 ± 0.12 

Papp,B>A 2.85 ± 0.13 6.86 ± 0.7 1.31 ± 0.10 6.72 ± 1.81 

Efflux ratio 
(B>A/A>B) 1.31 ± 0.17 90.82 ± 23.35 0.99 ± 0.09 2.27 ± 0.62 

Papp is expressed in cm/sec x 105 
Values are expressed as mean ± SD 
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Figure 7-3: Expression and functional validation of OATP1B3 and OATP1B1 
transporters in HeLa and RKO cell lines.  

(A) Quantitative RT-PCR analysis was used to validate (i) OATP1B3 and (ii) 
OATP1B1 mRNA expression in the stably OATP-transfected HeLa and RKO cells, 
respectively. (B) (i) Hela-pIRES and Hela-OATP1B3 cells were incubated with 0.005 
µM of 3H-CCK-8 for 10 min. (ii) RKO-pIRES and RKO-OATP1B1 cells were 
incubated with 0.5 µM of 3H-BQ-123 for 30 min. The scintillation counting was 
determined in the cell lysate and normalized with the cell lysate protein 
concentration as described in the Materials and Methods section. Data are 
represented as mean ± SD (n=8-10). (C) Immunohistochemical staining for OATP2 
was used to validate OATP1B1 and OATP1B3 transporter expression in the OATP 
stably transfected cell lines (i) HeLa-pIRES and HeLa-OATP1B3 and (ii) RKO-
pIRES and RKO-OATP1B1, respectively. (iii) Human liver was used as positive 
control to confirm the specificity of the OATP2 antibody for the OATP1B1 and 
OATP1B3 uptake transporters. 
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Figure 7-4: Expression of Top1 in MDCKII-pcDNA/BCRP, OVCAR-8/NCI/ADR-RES 
and HeLa-pIRES/OATP1B3 cell lines.  

Immunoblotting analysis was employed to evaluate the expression of Top1 in 
lysates prepared from MDCKII-pcDNA/BCRP, OVCAR-8/NCI/ADR-RES and HeLa-
pIRES/OATP1B3 cells. Actin was used as a loading control. 
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Figure 7-5: Expression of γH2AX in HeLa-pIRES/OATP1B3 cells lines.  

Western blot analysis was used to evaluate γH2AX in lysates of mock- and 
OATP1B3-transfected cells treated with AR-67 carboxylate (20 μM) for 5 min. 
γH2AX to actin band intensity ratios were calculated and are presented as mean 
(n=3) ± SD. Statistical analysis was performed using unpaired t-test, p=0.669. 
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Figure 7-6: Schematic of AR-67 dosing schedules.  

(A) The AR-67 antitumor effect was evaluated using NCI-H460 tumor-bearing nude 
mice. They received AR-67 lactone as an iv bolus at 3 dose levels on days 
designated with x. More specifically, the animals received lactone at doses equal 
to 7.5 mg/kg daily for 5 consecutive days (day 1-5) or 3.75 mg/kg daily for 5 
consecutive days (day 1-5) a week for 2 weeks or 2.5 mg/kg daily for 5 consecutive 
days (day 1-5) a week for 3 weeks. (B) Biological activity of AR-67 lactone in 
NSCLC xenografts was studied in NSCLC xenografts. They received AR-67 
lactone as an iv bolus at 3 dose levels on days designated with x. More 
specifically, the animals received lactone at doses equal to 7.5 mg/kg daily for 5 
consecutive days (day 1-5) or 3.75 mg/kg daily for 5 consecutive days (day 1-5) a 
week for 2 weeks or 2.5 mg/kg daily for 5 consecutive days (day 1-5) a week for 3 
weeks. They were sacrificed and had their tumor tissue collected on the last day 
of treatment, 6 hours after AR-67 administration, designated by arrows. 
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Figure 7-7: Biological activity of AR-67 lactone in cancer patients with metastatic 
or refractory solid tumors.  

Western blotting was used to evaluate the expression level of Top1 and γH2AX in 
tumor tissue collected from study participants at two different time points, 
between 3 and 24 hours after the start of the infusion, designated as t=0 hours, on 
Day 1 of Cycle 1 (A). Actin was used as a loading control. (B and C) Graphical 
representation of the densitometry analysis results performed on the Top1 (B) and 
γH2AX (C) data presented on panel (A). 
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Figure 7-8: Pharmacokinetic profile of AR-67 lactone in plasma of phase I cancer 
patients after iv administration of AR-67 lactone. 

AR-67 lactone was quantified using a validated bioanalytical method in plasma 
samples collected from patients (n=26) participating in a first-in-human phase I 
clinical trial. AR-67 lactone was administered at doses ranging from 1.2 to 12.4 
mg/m2/kg for 5 consecutive days as a 1-h infusion every 21 days and the 
pharmacokinetics of the agent were studied on days 1 (C, D) and 4 (E, F) of cycle 1 
(A, B). Concentrations of lactone (A, C and E) and their logarithmic values ((B, D 
and F) are plotted agaist time (h).  
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Figure 7-9: Pharmacokinetic profile of total AR-67 in plasma of phase I cancer 
patients after iv administration of AR-67 lactone. 

Total AR-67 (lactone and carboxylate) was quantified using a validated 
bioanalytical method in plasma samples collected from patients (n=26) 
participating in a first-in-human phase I clinical trial. AR-67 lactone was 
administered at doses ranging from 1.2 to 12.4 mg/m2/kg for 5 consecutive days 
as a 1-h infusion every 21 days and the pharmacokinetics of the agent were 
studied on days 1 (C, D) and 4 (E, F) of cycle 1 (A, B). Concentrations of Total AR-
67 (A, C and E) and their logarithmic values ((B, D and F) are plotted agaist time 
(h).  
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Table 7-2: Evaluation of co-linearity between patient clinical characteristics used 
for covariate model development. 

Covariate CRCL AGE BUN Alb Tbil ALP ALT AST LDH DOSELEV HCT 

BSA 0.01* 0.94 0.77 0.04* 0.56 0.19 0.25 0.41 0.36 0.63 0.63 

CRCL 

 

0.22 0.02* 0.31 0.32 0.06 0.48 0.32 0.04* 0.59 0.39 

AGE 

 

0.17 0.45 0.69 0.95 0.01* 0.02* 0.38 0.84 0.92 

BUN 

 

0.64 0.11 0.35 0.19 0.10 0.07 0.76 0.50 

Alb 

 

0.18 0.01* 0.74 0.88 0.04* 0.35 0.03* 

Tbil 

 

0.15 0.83 0.16 0.003* 0.44 0.03* 

ALP 

 

0.87 0.84 0.01* 0.85 0.06 

ALT 

 

0.0007* 0.62 0.36 0.85 

AST 

 

0.13 0.67 0.01* 

LDH 

 

0.96 0.01* 

DOSELEV 
 

0.24 

p value: linear regression analysis where slope significantly different from zero for 
*p<0.05 

BSA: Body surface area, CRCL: creatinine clearance, BUN: blood urea nitrogen, Alb: 
albumin, Tbil: total bilirubin, ALP: alkaline phosphatase, ALT: alanine transaminase, AST: 

aspartate transaminase, LDH: liver dehydrogenase, DOSELEV: AR-67 dose level that 
patients were assigned to, HCT: hematocrit. 
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Figure 7-10: Diagnostic plots of conditional weighted residuals obtained from 
population pharmacokinetic models developed for AR-67 lactone and total AR-67.  

Plots of conditional weighted residuals (CWRES) versus population predicted AR-
67 lactone (A) and total AR-67 (B) plasma concentrations (PPRE).  The population 
pharmacokinetics were studied after administration of AR-67 in cancer patients 
(n=19) with solid tumors using a two-compartment structural model to fit the data 
(panels A and B for lactone and total AR-67, respectively). Lines vertical to the X-
axis at Y=-2 and 2 were included in the graph for evaluation of randomness. AR-67 
PPRE plasma concentrations are given in ng/mL. 
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Figure 7-11: Scatter plots of the effect of tumor type on AR-67 clearance. 

The relationship between AR-67 lactone (A, C) or total AR-67 (B, D) individual 
population predicted clearance estimates and tumor type (liver, gut) is depicted. 
The individual population clearance estimates for lactone and total AR-67 were 
obtained after performing population analysis on pharmacokinetic data (n=25) 
collected during the AR-67 phase I clinical trial as described in the materials and 
methods section. Statistically significant differences between subject groups were 
detected by performing the Unpaired t-test/Mann-Whitney test (Tumor (+) vs 
Tumor (-)). P<0.05 was considered statistically significant (*p<0.05). Only 
statistically significant differences are indicated. Clearance values are given as 
Liters/hour, L/h. Broken line, geometric mean. 
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Table 7-3: AR-67 individual population predicted clearance estimates normalized 
to body-size measures of patients that received AR-67 lactone. 

 

 

AR-67 lactone AR-67 total 

 

Individual population predicted clearance (L/h) 

Body-size 
measurements mean ± SD CV(%) mean ± SD CV(%) 

None 31.1 ± 11.4 36.7 28.3 ± 6.9 24.5 

BSA, m2 16.1 ± 5.6 34.5 14.5 ± 3.2 22.0 

LBW, kg 0.4 ± 0.1 37.2 0.3 ±0.1 26.8 

IBW, kg 0.5 ± 0.2 36.5 0.4 ± 0.1 26.5 

AIBW, kg 0.5 ± 0.2 34.5 0.4 ± 0.1 22.8 

BMI, kg/m2 1.1 ± 0.5 40.5 1.0 ± 0.3 29.8 
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8. Appendix 2: An HPLC Assay for the Lipophilic Camptothecin 

Analog AR-67 Carboxylate and Lactone in Human Whole 

Blood 

Eleftheria Tsakalozou, Jamie Horn, Mark Leggas 

Originally published at Biomedical Chromatography 2010 Oct;24(10):1045-51 

8.1 Abstract. 

AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin, DB-67) is a camptothecin analog 

currently in early stage clinical trials. The lactone moiety of camptothecins hydrolyzes 

readily in blood to yield the pharmacologically inactive carboxylate form. However the 

lactone form of third generation lipophilic congeners, such as AR-67, is more stable 

possibly due to partitioning into red cell membranes. This prompted us to develop a 

reverse phase HPLC method with fluorescence detection (excitation 380 nm / emission 

560 nm), which could quantitate the concentration of AR-67 lactone and carboxylate in 

whole blood. Samples were prepared by red cell lysis, protein precipitation with 

methanol and centrifugation to remove denatured materials. Recovery was estimated to 

be >85%. Analytes were eluted isocratically with 0.15 M ammonium acetate buffer 

containing 10 mM TBAP (pH 6.5) and acetonitrile (65:35, v/v) on a Nova-Pak C18 

column (4 µm; 3.9 mm × 150 mm).  The assay was linear in the range of 0.5-300 ng/mL 

and 2.5-300 ng/mL for carboxylate and lactone, respectively. Accuracy and precision 

were acceptable.  AR-67 forms were stable in whole blood and in methanolic 

supernatants. This assay has been successfully applied to measure AR-67 

concentrations in whole blood of patients enrolled in a phase I study. 
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8.2 Introduction. 

AR-67 is a novel 3rd generation camptothecin analog currently under clinical 

investigation for the treatment of cancer (Figure 8-1). Camptothecin analogs are 

anticancer agents that prevent relaxation of supercoiled DNA by interacting and 

“poisoning” the function of topoisomerase-I.  During DNA transcription and replication, 

camptothecins can interfere with topoisomerase-I as it tries to religate nicked DNA 

strands. This ultimately leads to double strand DNA breaks and cell death [3, 5, 20]. In 

vitro and in vivo pharmacological studies have demonstrated that the E-ring lactone and 

20-hydroxyl group of camptothecin and its analogs play a fundamental role in the 

topoisomerase-I mediated anticancer activity [219-221]. 

One limitation to the anticancer activity of all camptothecins is the labile nature of their α-

hydroxy-δ-lactone ring (lactone form), which is reversibly hydrolyzed to yield a more 

hydrophilic and pharmacologically inactive carboxylate at physiological pH. Lactone 

hydrolysis is facilitated further by favorable protein binding of the carboxylate to the 

human serum albumin (HSA), which provides sink conditions and shifts the equilibrium 

toward carboxylate formation [16, 222].  

To overcome this limitation, 2nd generation analogues were designed with substituent 

groups that decreased the lactone hydrolysis rates. Compared to camptothecin, the 

clinically available analogs topotecan and irinotecan as well as its active metabolite SN-

38, bind to a lesser extent to HSA and the pharmacophore lactone ring is stabilized [17, 

223]. However, the clinically reported ratios of lactone areas under the concentration-

time curve (AUC) for those and other congeners in early clinical development are in the 

order of 30-70% of the total AUC [42, 224-226].  
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More recent efforts have focused on the development of highly lipophilic analogs, 

including AR-67, which have various silyl-hydrocarbon substituents that appear to 

minimize interaction with albumin and decrease hydrolysis rates [125, 227-229]. We 

have previously developed an analytical method for measuring AR-67 in plasma [137]. 

However, given its increased lipophilicity it is possible that in clinical situations AR-67 

could partition into erythrocytes, which could effectively act as a drug depot [201].  This 

has led us to develop an assay for measuring AR-67 concentration in whole blood so 

that we can explore relationships between pharmacokinetic parameters obtained from 

blood and plasma. Strong correlations between such parameters would allow the use of 

a blood assay and minimize the methodological efforts associated with plasma 

extraction and procedures designed to ensure lactone stabilization at the bedside. In this 

study we sought to develop processing and analytical methods that would accurately 

quantitate the lactone and carboxylate forms of AR-67 in whole blood. This assay would 

be used to analyze samples obtained from the first-in-man clinical study of AR-67.  
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Figure 8-1: Chemical structure of the lactone and carboxylate form of the 
camptothecin analog, AR-67 
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8.3 Experimental. 

8.3.1 Chemicals and Reagents.  

Solvents including methanol and acetonitrile (from Mallinckrodt Baker, Philipsburg, NJ) 

were of HPLC grade and obtained from VWR (West Chester, PA). Ammonium acetate 

(Mallinckrodt Baker, Philipsburg, NJ) and sodium hydroxide (EM Science, Gibbstown, 

NJ) were purchased from VWR (West Chester, PA). Tetrabutylammonium 

dihydrogenphosphate (TBAP; 1.0 M aqueous solution) and dimethyl sulfoxide (DMSO) 

were obtained from Sigma-Aldrich (St. Louis, MO). Hydrochloric acid came from Fisher 

Scientific (Fair Lawn, NJ). Magnesium- and calcium-free Dulbecco’s phosphate buffer 

saline (PBS) was from Gibco (Invitrogen Corp., Carlsbad, CA). Amber siliconized 

polypropylene micro centrifuge tubes were from Crystalgen Inc. (Plainview, NJ) and 

siliconized pipet tips were from VWR (West Chester, PA). AR-67 (7-t-butyldimethylsilyl-

10-hydroxycamptothecin, DB-67) of high purity (>98%) was obtained from Novartis 

Pharmaceuticals Corporation. The solid compound was stored at -80°C. Blank human 

whole blood used during the validation procedure was obtained from the Central 

Kentucky Blood Bank (Lexington, KY), or from consenting patients enrolled in an AR-67 

phase I clinical trial [78]. 

8.3.2 Instrumentation and Chromatographic Conditions.  

Analysis was performed on a Shimadzu HPLC system (Shimadzu Inc., Atlanta, GA) 

controlled by Class-VP integrating software (Version 7.2.1). The system was equipped 

with an DGU-14A in-line degasser, a LC-10AD-VP pump, a Shimandzu SIL-10AD-VP 

refrigerated autoinjector with rack temperature stable at 4°C and an RF-10XL 

fluorescence detector. Separation of compounds was carried out at ambient temperature 

using a reverse-phase C18 analytical column (Waters Nova-Pak C18 4 µm; 3.9 mm × 
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150 mm) and a C18 guard column (Waters Nova-Pak C18 4 µm; 3.9 mm × 20 mm). The 

mobile phase consisted of 0.15 M ammonium acetate buffer containing 10 mM TBAP 

(pH 6.5) and acetonitrile (65:35, v/v). These buffer concentrations were necessary to 

obtain optimal peak shape for the carboxylate analyte. In all analyses, the mobile phase 

was pumped at a flow rate of 1 mL/min, a 50-µL aliquot was injected onto the 

chromatographic system and the excitation wavelength was set at 380 nm while the 

emission wavelength was set at 560 nm [74]. Unless otherwise indicated, sample 

extracts were diluted with an equivalent volume of 0.15 M ammonium acetate buffer 

containing 10 mM TBAP (pH 6.5) prior to 50-µL injection. Once stability was 

characterized, all buffered diluted samples were analyzed within a 6-hour window to 

minimize analyte interconversion. 

8.3.3 Validation Procedures.  

The method was validated according to the FDA “Guidance for 

Industry: Bioanalytical Method Validation” document [230]. Certain aspects of the 

validation process are presented below.  

8.3.4 Specificity and Selectivity.  

Whole blood samples from four different sources were spiked (0.5 - 5 ng/mL) with either 

lactone or carboxylate and were injected in triplicate.  The lowest limit of quantification 

(LLOQ) was determined based upon analyte signal to noise ratio of ≥5, analyte accuracy 

of 80-120%, and precision of <20%. 

8.3.5 Calibration, Quality Control and Experimental Sample Preparation.  

During the preparation of calibrators and control samples, all aqueous diluents and 

solutions were kept on wet ice and all methanolic diluents and solutions were kept on dry 

ice. Amber containers were used throughout sample preparation to avoid photo 
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degradation while siliconized plastics and glass were used to prevent drug absorption. 

An accurately weighed amount of AR-67 was dissolved in DMSO to produce a stock 

solution of 1 mg/mL that was aliquoted (30 μL) for single-time use. These aliquots were 

stored at -80°C for up to one month [137]. Aqueous working solutions of 10, 1 and 0.1 

μg/mL were freshly prepared from stock in 0.005 N sodium hydroxide solution or 0.005 N 

hydrochloric acid solutions for carboxylate or lactone, respectively. The carboxylate 

working solutions were prepared by serial dilutions whereas the lactone working 

solutions were prepared individually from the stock solution. Working solutions were 

equilibrated for one hour on ice (4°C). Whole blood calibrators containing 0, 0.5, 1, 5, 10, 

20, 50, 100, 200 and 300 ng/mL of AR-67 carboxylate and 0, 2.5, 5, 10, 20, 50, 100, 200 

and 300 ng/mL of AR-67 lactone were prepared by adding the appropriate volumes of 

the individual working solutions to 940 μL of whole blood and diluted to 1000 µL with 1x 

PBS (pH 7.4). The lactone form of AR-67 was generally added prior to the carboxylate 

form. After vortex mixing for 10 sec, the spiked whole blood samples were frozen at –

80°C for 30 min to lyse the blood cells. Lysed samples were thawed at room temperature 

and deproteinated with 4 volumes of cold (-80°C) methanol. The methanolic mixture was 

vortexed for 10 min at room temperature and centrifuged at 13,000 × g (10 min, 4°C). 

The methanolic supernatants were decanted into amber tubes and analyzed 

immediately as indicated above or stored at -80°C until analysis.  Finally, the methanolic 

extracts were diluted 1:1 with mobile phase buffer before being placed in the Shimandzu 

SIL-10AD-VP refrigerated autoinjector to be injected. Three quality control samples (QC) 

containing 1.5 ng/mL of carboxylate and 7.0 ng/mL of lactone (QC1), 150 ng/mL of each 

analyte (QC2) and 250 ng/mL of each analyte (QC3) were prepared following the same 

procedure as described for the calibrators. Quality control methanolic supernatants were 

used in assay validation and to confirm daily system suitability throughout the analysis of 
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experimental samples. The acceptance criterion for each back-calculated quality control 

sample concentration was 15% deviation from the nominal. 

8.3.6 Interconversion and Stability Experiments.  

Experiments were conducted to compare the interconversion of analytes in individually 

spiked whole blood samples (250 ng/mL carboxylate or lactone) and in purely basic 

(0.005 N NaOH) and acidic (0.005 N HCl) solutions diluted as necessary (250 ng/mL 

carboxylate or lactone).  

Stability tests were performed on QC1 and QC3 whole blood samples and their 

methanolic supernatants. Samples were deemed stable if their assayed concentration 

remained within 15% of the initially measured concentration. When short term stability of 

methanolic supernatants was studied, either lactone or carboxylate supernatants were 

stored in the autosampler (4°C) for up to 24 hours after being diluted with an equal 

volume of mobile phase buffer. Samples were injected at 0, 1, 3, 6 and 24 hours and 

analytical HPLC runs were conducted based on the results regarding the stability of the 

methanolic extracts in mobile phase buffer. For long term stability of the methanolic 

supernatants,  the supernatants containing both analytes were stored at -80°C and were 

mixed 1:1 with mobile phase buffer immediately before injection at predetermined time 

points (0, 1, 5 days, 1 and 2 weeks, 1 and 2 months). Moreover, short (0, 1, 3 and 6 

hours at 4ºC) and long term (0, 1 and 3 days, 1 and 2 weeks, 1 and 2 months at -80°C) 

stability was evaluated in human whole blood. In those cases, the analytes were 

extracted from QC samples at the experimental time points and injected after being 

mixed 1:1 with mobile phase buffer. Single injections of triplicate samples were analyzed 

unless otherwise indicated. 
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8.3.7 Recovery.  

Single injections of triplicate QC1 and QC3 methanolic supernatants were used to 

evaluate the recovery of both AR-67 forms. Recovery was estimated by comparing peak 

heights of whole blood methanolic supernatants to those of carboxylate and lactone 

methanol solutions freshly prepared and immediately injected after dilution with an equal 

volume of mobile phase buffer.  

8.3.8 Statistical Analysis.  

Data and regression analyses were performed with Shimadzu Class VP software 

(Version 7.2.1.). A linear regression model was used to fit the peak heights from the 

calibration solutions. Inverse or inverse square weighting schemes were used as needed 

to increase the correlation coefficient. Control and unknown sample concentrations were 

calculated using the resulting standard curve equations.     

8.3.9 Pharmacokinetics in Humans.  

The pharmacokinetic profile of AR-67 in whole blood samples was obtained from a 

consenting patient enrolled in a phase I clinical trial. The study was approved by 

institutional review boards and met all ethical and research standards. Design of that trial 

will be reported elsewhere [78]. The patient received a dose of 6.3 mg/m2 AR-67 as an 

1-hour intravenous infusion and blood samples were collected at 0, 10, 45 minutes, 1, 

1.25, 1.5, 2, 4, 6 and 8 hours after the start of the infusion. Collected blood samples 

were transfered into amber siliconized microcentrifuge tubes, and stored on dry ice for 

later transfer to -80°C freezer. Within one month from the time of collection, blood 

samples were thawed and processed. Methanolic supernantants were analysed within 1 

week from their preparation. Once processed and diluted with buffer, samples were 

analyzed within a 6-hour window to minimize analyte interconversion. 
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8.4 Results. 

8.4.1 Sample Processing and Assay Development.  

The conditions used for processing and quantitating AR-67 from human whole blood 

were adapted and developed from those used to quantify AR-67 in mouse plasma [137]. 

Due to the lipophilicity of the AR-67 lactone, we expected increased partitioning in red 

blood cell membranes. Thus, a lysis step was implemented to increase lactone recovery. 

In addition, the deproteinization time was increased from 10 sec to 10 min, while vortex 

mixing, and the resulting solution was centrifuged at 13,000x rpm for 10 min, rather than 

2 min, in order to ensure complete removal of particulates.  

8.4.2 Selectivity and Specificity.  

The carboxylate and lactone of AR-67 were well separated from interfering matrix peaks 

and from each other (resolution ≥ 1.5; Rt = 3.2 and 9.7 min for carboxylate and lactone, 

respectively) at all concentrations. Four different human whole blood sources were 

analyzed and endogenous components did not interfere with any of the analytes at 

analyte LLOQ values (Figure 8-2).  

8.4.3 Linearity, LLOQ, Accuracy and Precision.  

Calibration curves prepared in whole blood were created in the range of 0.5-300 ng/mL 

for the carboxylate and 2.5-300 ng/mL for the lactone moiety. As shown in Table 1, three 

calibration curves were prepared from different healthy human volunteer whole blood 

sources, resulting in a mean correlation coefficient for both analyte curves of r² ≥0.999.  

The linearity between the detector response and the nominal concentration of the 

analytes, allows for accurate and precise estimations of AR-67 carboxylate and lactone 

concentrations in high, mid, and low quality control solutions, which were within 85-115% 

of the expected concentration value (Table 8-1). The LLOQ for carboxylate was 

determined to be 0.5 ng/mL while for lactone was found to be 2.5 ng/mL. The 
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reproducibility of the analytical method was evaluated by calculating the intra- and inter-

day relative standard deviations (RSDs). The intraday variability for low, mid, and high 

QC concentrations was <5.2% and <3.4% for carboxylate and lactone, respectively. The 

interday variability for low, mid, and high QC concenttrations was <8.4% and 9.3% for 

carboxylate and lactone respectively. These results indicate that the assay method is 

reproducible within the same day as well as on different days (Table 8-1). 
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Figure 8-2: Chromatograms of AR-67 carboxylate and lactone in human blood. 

Representative chromatographic traces of methanolic supernatants generated 
from (A) blank human whole blood, (B) low concentration quality control sample 
(QC1), (C) high concentration quality control sample (QC3), and (D) phase I patient 
sample collected 5 min after the start of a 1-hour intravenous infusion of AR-67 
lactone. 
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Table 8-1: Assay regression, accuracy and precision. 

Analyte 
Calibration 
Curves 

(n=3) 

Average Regression Parameters* 

(± standard deviation) 

Slope y-intercept R2 Weighting 

Carboxylate 

0, 0.5-300 ng/mL 

0.0003395 

(±0.0000265) 

0.2090 (±0.1490) 0.999 

(±0.0016) 

1/Amount2 

Lactone 

0, 2.5-300 ng/mL 

0.0005107 

(±0.0000064) 

0.4419 (±0.3239) 0.999 

(±0.0002) 

1/Response 

  
Intra-day 
Accuracy and 
Precision (n=5)** 

Average Percent Accuracy (Relative Standard Deviation) 

QC-1 QC-2 QC-3 

Carboxylate 99.6 (5.23 %) 105.0 (2.66 %) 104.3 (3.25 %) 

Lactone 86.7 (1.26 %) 105.4 (2.13 %) 105.6 (3.43 %) 

  

Inter-day 
Accuracy and 
Precision (n=10)** 

Average Percent Accuracy (Relative Standard Deviation) 

QC-1 QC-2 QC-3 

Carboxylate 89.0 (1.87 %) 100.0 (8.36 %) 99.7 (5.92 %) 

Lactone 113.7 (1.35 %) 97.5 (9.26 %) 103.2 (6.36 %) 

 *Regression with peak height as independent variable.** Accuracy was measured as the 
percent of nominal with quality control samples containing 1.5 ng/mL carboxylate and 7 
ng/mL lactone (QC-1), 150 ng/mL each analyte (QC-2), or 250 ng/mL each analyte (QC-
3). 
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8.4.4 Interconversion and Stability of Analytes.  

Experiments to determine the interconversion of analytes in whole blood spiked 

individually with 250 ng/mL carboxylate or lactone indicated that sample workup resulted 

in 6.1% conversion of carboxylate to lactone and 2.2% conversion of lactone to 

carboxylate (n=2-5). Analytes prepared in basic (pH 11.3; 0.005 N NaOH) and acidic (pH 

3.4; 0.005 N HCl) solutions and processed the same as the whole blood samples yielded 

no interconversion for either analyte.   

Short term stability of methanolic supernatants indicated that lactone and carboxylate, in 

low and high concentration (QC1and QC3), were stable for at least 6 hours in the 

autoinjector (4°C) after being and diluted (1:1, v/v) with mobile phase buffer (Table 8-2). 

Long term stability of the methanolic supernatants indicated that they were stable for up 

to 14 days if stored at -80°C (Table 8-3). Short term stability in whole blood indicated 

that analytes were stable for 6 hours at 4°C (Table 8-2). The lactone form of AR-67 in 

spiked whole blood samples proved to be stable after being stored at -80°C for at least 

28 days. However, the carboxylate concentrations decreased to approximately 85% of 

the initial values by 1 week in storage at -80°C, but further decrease was not observed 

by the end of week 4 (Table 8-3). Freeze-thaw analysis of whole blood samples spiked 

with low (QC1) or high (QC3) concentrations of either lactone or carboxylate were stable 

after three freeze-thaw cycles (Table 8-4).  

 

 

 

 



www.manaraa.com
162 

 

Table 8-2: Analyte short term stability in whole blood and in buffer diluted 
methanolic supernatants stored at 4°C. 

 Whole Blood  

Average Percent Remaining at Given Time Point* 

(± standard deviation) 

Time 0 1 hr 3 hr 6 hr 

QC-1 

(n=3) 

Carboxylate 100.0 108.5 (±6.5) 104.5 (±8.6) 104.8 (±2.9) 

Lactone 100.0 101.7 (±5.8) 97.2 (±5.2) 96.3 (±2.8) 

QC-3 

(n=3) 

Carboxylate 100.0 99.4 (±3.8) 99.1 (±6.9) 97.8 (±4.3) 

Lactone 100.0 102.5 (±2.1) 108.1 (±5.9) 109.8 (±5.1) 

  

Buffer Diluted 
Methanolic 

Supernatants 

Average Percent Remaining at Given Time Point 

(± standard deviation) 

Time 0 1 hr 3 hr 6 hr 24 hr 

QC-1 
(n=3) 

Carboxylate 100.0 101.3 
(±2.4) 99.8 (±4.4) 102.3 (±2.6) 121.9 (±6.1) 

Lactone 100.0 99.9 (±3.4) 98.3 (±3.8) 95.8 (±2.6) 95.7 (±1.5) 

QC-3 

(n=3) 

Carboxylate 100.0 96.8 (±1.2) 95.7 (±1.6) 91.0 (±3.2) 79.7 (±1.2) 

Lactone 100.0 101.3 
(±3.1) 102.4 (±1.5) 107.4 (±3.0) 113.7 (±3.1) 

*Analyte levels expressed as the average percent of average time zero values with quality 
control samples containing 1.5 ng/mL carboxylate and 7 ng/mL lactone (QC-1), or 250 
ng/mL each analyte (QC-3). 
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Table 8-3: Analyte long term stability in whole blood and methanolic supernatants 
stored at -80°C. 

 Whole Blood  

Average Percent Remaining at Given Time Point* 

(± standard deviation) 

Time 
0 1 Day 3 Days 1 Week 2 

Weeks 
1 

Month 
2 

Months 

Q
C

-1
 (n

=3
) 

Carboxyl
ate 100.0 101.11 

(±6.7) 
105.64 
(±9.8) 

99.08 
(±10.0) 

109.28 
(±5.2) 

77.49 
(±3.0) 

95.87 
(±1.9) 

Lactone 100.0 103.41 
(±2.3) 

104.51 
(±11.5) 

98.77 
(±7.8) 

105.23 
(±4.2) 

87.57 
(±1.3) 

118.66 
(±7.1) 

Q
C

-3
 

(n
=3

) 

Carboxyl
ate 100.0 89.03 

(±8.0) 
88.43 
(±8.1) 

85.05 
(±7.1) 

83.05 
(±3.4) 

79.95 
(±5.3) 

84.58 
(±7.0) 

Lactone 100.0 97.64 
(±8.0) 

97.12 
(±10.0) 

84.28 
(±7.9) 

87.62 
(±4.4) 

90.74 
(±6.4) 

111.12 
(±10.4) 

  

Methanolic 
Supernatants 

Average Percent Remaining at Given Time Point* 

(± standard deviation) 

Time 0 1 Day 5 Days 1 Week 2 
Weeks 

1 
Month 

2 
Months 

Q
C

-1
 (n

=3
) Carboxyl

ate 100.0 107.4 
(±1.8) 

101.2 
(±1.14) 

93.4 
(±8.3) 

93.7 
(±6.6) 

82.4 
(±3.6) 

60.0 
(±9.4) 

Lactone 100.0 109.9 
(±3.1) 

100.3 
(±2.6) 

94.4 
(±0.8) 

96.0 
(±2.4) 

86.7 
(±2.7) 

75.0 
(±3.1) 

Q
C

-3
 

(n
=3

) 

Carboxyl
ate 100.0 102.1 

(±0.3) 
95.6 

(±1.9) 
90.0 

(±3.2) 
86.7 

(±1.5) 
81.4 

(±2.4) 
71.8 

(±2.2) 

Lactone 100.0 107.1 
(±1.8) 

98.9 
(±2.1) 

94.1 
(±2.8) 

93.3 
(±1.7) 

88.2 
(±2.4) 

77.5 
(±1.7) 

*Analyte levels expressed as the average percent of average time zero values with 
quality control samples containing 1.5 ng/mL carboxylate and 7 ng/mL lactone (QC-1), 
or 250 ng/mL each analyte (QC-3). 
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Table 8-4: Analyte recovery and freeze-thaw (F-T) stability. 

Recovery* 
Percent of Methanolic Analyte Solutions (± standard 

deviation) 

QC-1 (n=3) 
 

QC-3 (n=3) 

Carboxylate 94.76 (±2.99) 
 

86.6 (±0.99) 

Lactone 109.66 (±5.30) 
 

99.83 (±1.40) 

Freeze-Thaw 
Stability** 

Average Percent Remaining at Given Cycle 

(± standard deviation) 

Cycle 0 1 2 3 

QC-1 
(n=5) 

Carboxylate 
 

100 119.52 
(±9.19) 

97.73 

(±6.32) 
94.02 

(±6.08) 

Lactone 
 

100 120.24 
(±16.00) 

109.25 
(±21.02) 

98.58 
(±7.15) 

QC-3 
(n=5) 

Carboxylate 
 

100 108.56 
(±14.83) 

108.67 
(±10.28) 

91.41 
(±12.47) 

Lactone 
 

100 113.43 
(±10.14) 

115.95 
(±11.50) 

99.23 
(±6.82) 

*Recovery was measured as percent peak height of individually spiked methanolic 
supernatants to individually spiked methanolic solutions. ** Stability given as their 

percentage of Cycle 0 averages. 
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8.4.5 Recovery.  

Recovery was similar at low and high concentrations of each analyte (Table 8-4). In 

whole blood samples spiked with low concentrations (QC1), average recovery was 

94.8% (±3.0) and 109.7% (±5.3) for carboxylate and lactone, respectively. Recovery in 

samples spiked with high concentrations (QC3), average recovery was 86.6% (±1.0) and 

99.8% (±1.4) for carboxylate and lactone, respectively.   

8.4.6 Clinical application.  

This method enabled us to determine the pharmacokinetic profile of AR-67 following 

intravenous administration to patients with solid malignancies. Blood concentrations for 

AR-67 carboxylate and lactone versus time are shown in Figure 8-3 for one of the 

patients participating in the study.  
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Figure 8-3: Pharmacokinetic profile of AR-67 in whole blood from a patient after 
administration of AR-67 (6.3 mg/m2) as an intravenous infusion for 60 min. 
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8.5 Discussion. 

An assay to quantitate carboxylate and lactone AR-67 forms in human whole blood has 

been developed and validated. The analysis was performed using reversed-phase high 

performance liquid chromatography coupled with fluorescence detection. Sample 

processing included a red cell lysis step by storage on dry ice or -80°C to ensure 

efficient recovery of both the hydrophilic carboxylate and, in particular, the highly 

lipophilic lactone, followed by a simple methanolic protein precipitation step. 

Although numerous analytical methods using HPLC [137, 231, 232] have been 

developed for the quantification of camptothecin analogs in biological matrices, the 

challenge of their chemical instability remains. Our method demonstrates that protein 

precipitation with cold (-80°C) methanol efficiently releases protein bound analytes and 

provides adequate stability for accurate analysis in the laboratory setting,  provided that 

methanolic supernatants are stored at -80°C and analyzed at 4°C within 2 weeks of 

sample processing. The present assay allows for the accurate and precise quantitation 

of AR-67 carboxylate and lactone forms in human whole blood making it a valid assay 

for future clinical studies. Its linearity in the range of 0.5-300 ng/mL for the carboxylate 

and 2.5-300 ng/mL for the lactone was found satisfactory and allows quantitation of both 

analytes in biological samples within this concentration range. In contrast to other 

methods, acidification of the blood samples is not necessary since complete separation 

between both analytes and endogenous compounds was achieved under the 

chromatographic conditions described above. Red cell lysis followed by the methanolic 

protein precipitation appears to efficiently recover both the carboxylate and lactone from 

the biological matrix. The LLOQ for carboxylate and lactone (0.5 and 2.5 ng/mL, 

respectively) allows for its application to future pharmacokinetic studies. Stability tests 
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have shown that both AR-67 forms are stable after 3 freeze-thaw cycles. Most 

importantly, although both carboxylate and lactone forms are stable in their methanolic 

extracts for up to two weeks, they seem to be stable in whole blood for a longer period. 

The lactone form appears to be more stable in the biological matrix compared to the 

carboxylate form. This apparent stability could also be because the highly lipophilic 

lactone may absorb onto surfaces but is replenished via conversion from the 

carboxylate.  This was prevented to a large extent by pretreating all consumables with a 

siliconizing solution. However, absorption of the highly lipophilic lactone may continue, 

albeit at a much reduced rate, over time. Under our processing and chromatography 

conditions, analysis of experimental samples with high lactone concentrations is likely to 

overestimate the carboxylate concentration. However, given the relatively high lactone 

concentatrations (Figure 8-3), this is insignificant in relative terms.  

Previous clinical work has demonstrated that camptothecins interact with red cells. It has 

been reported that irinotecan is selectively partitions into red blood cells, while its 

metabolite SN-38 distributes preferentially in the plasma compartment [231].  

Interestingly, differences on the pharmacokinetic profile of topotecan between the two 

sexes were noted, but ultimately they were attributed to hematocrit differences between 

males and females [49, 201, 232]. Finally, studies have shown that red blood cells serve 

as a depot compartment for the lactone 9-amino-20(S)-campothecin [233]. 

Consequently, pharmacokinetic parameters such as the volume of distribution and the 

clearance depend greatly on the biological matrix from which the sample was collected 

[234].  The development of the current analytical method for assaying AR-67 in whole 

blood will allow us to study the pharmacokinetics of AR-67 in the blood compartment. 

The assay was successfully applied to determine the concentrations of AR-67 in cancer 

patients enrolled in a phase I clinical trial [78]. As demonstrated in Figure 8-3, the 



www.manaraa.com
169 

 

lactone concentration was higher than the carboxylate at all time points. This was 

consistent with the expected behavior of the lactone partitioning in red cell membranes. 

Interestingly, the pharmacokinetic profiles of AR-67 in blood and in plasma appeared to 

mirror each other indicating that the red cells were not acting as a depot for AR-67 (data 

not shown). Further studies are in progress to assess whether patient dependent 

covariates, such as hematocrit, age and weight play a role in the disposition of AR-67.   
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8.6 Conclusions. 

A high-performance liquid chromatography method for simultaneous determination of 

AR-67 carboxylate and lactone in whole blood has been developed and validated. The 

method has been shown to be sensitive, accurate and precise. Lactone stability during 

sample processing remains a concern if temperature is not controlled and consumables 

are not siliconized, but AR-67 is stable in whole blood stored under the proper conditions 

(-80°C).  This is the first reported method for the analysis of AR-67 in whole blood matrix 

and will be used for the analysis of samples obtained from patients treated in clinical 

studies.  
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9.1 Translational Relevance. 

Topoisomerase I interacting agents have shown antineoplastic activity that is closely 

associated with the stability of their α-hydroxy-δ-lactone pharmacophore. 7-t-

Butyldimethylsilyl-10-hydroxycamptothecin (AR-67) is a novel third generation 

camptothecin analogue with increased lipophilicity and blood stability, relative to the 

clinically approved analogues topotecan and irinotecan. This phase I study was 

conducted to determine the maximum tolerated dose, dose limiting toxicities, and 

pharmacokinetics of AR-67 given daily for 5 days during a 21-day cycle to patients with 

advanced solid tumors. Four patients experienced stable disease and one patient had 

prolonged partial response (>16 months), indicating preliminary evidence of antitumor 

activity. Hematologic toxicities were manageable and notably none of the patients 

experienced diarrhea. AR-67 exhibited increased blood stability, and compared with 

other lipophilic investigational analogues, it did not seem to accumulate in plasma with 

repeat dosing. AR-67 warrants further evaluation to assess its efficacy alone or in 

combination with other agents. 

 

  



www.manaraa.com
173 

 

9.2 Abstract. 

Purpose: 7-t-Butyldimethylsilyl-10-hydroxycamptothecin (AR-67) is a novel third 

generation camptothecin selected for development based on the blood stability of its 

pharmacologically active lactone form and its high potency in preclinical models. Here, 

we report the initial phase I experience with i.v. AR-67 in adults with refractory solid 

tumors.  

Experimental Design and Methods: AR-67 was infused over 1 hour daily five times, 

every 21 days, using an accelerated titration trial design. Plasma was collected on the 

1st and 4th day of cycle 1 to determine pharmacokinetic parameters.  

Results: Twenty-six patients were treated at nine dosage levels (1.2-12.4 mg/m2/d). 

Dose-limiting toxicities were observed in five patients and consisted of grade 4 febrile 

neutropenia, grade 3 fatigue, and grade 4 thrombocytopenia. Common toxicities 

included leukopenia (23%), thrombocytopenia (15.4%), fatigue (15.4%), neutropenia 

(11.5%), and anemia (11.5%). No diarrhea was observed. The maximum tolerated 

dosage was 7.5 mg/m2/d. The lactone form was the predominant species in plasma 

(>87% of area under the plasma concentration-time curve) at all dosages. No drug 

accumulation was observed on day 4. Clearance was constant with increasing dosage 

and hematologic toxicities correlated with exposure (P < 0.001). A prolonged partial 

response was observed in one subject with non–small cell lung cancer. Stable disease 

was noted in patients with small cell lung cancer, non–small cell lung cancer, and 

duodenal cancer.  

Conclusions: AR-67 is a novel, blood-stable camptothecin with a predictable toxicity 

profile and linear pharmacokinetics. The recommended phase II dosage is 7.5 mg/m2/d 

five times every 21 days. 
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9.3 Introduction. 

Camptothecins are potent DNA/topoisomerase-I interacting agents and combine the 

merits of both cytotoxic and molecularly targeted agents [4, 20, 235]. Their potency is 

controlled by their α-hydroxy-δ-lactone pharmacophore, which hydrolyses to the open 

ring or carboxylate form in a pH dependent, but reversible manner. Although both the 

lactone and carboxylate forms have been shown to interact with the 

DNA/Topoisomerase-I complex, the lactone moiety is considered the active one [4, 20, 

29]. This may be attributed to the higher lipophilicity of the lactone form that could 

facilitate cell penetration as compared to the charged carboxylate [236]. In addition to 

the intrinsic hydrolysis rate of each analog, the carboxylate binds human serum albumin 

with high affinity and facilitates an equilibrium shift toward hydrolysis, thus further 

compromising the lactone form by creating sink conditions [16, 27, 179, 222].  

Given that camptothecin pharmacokinetics present a significant challenge to achieving 

lactone exposure, there has been a tremendous effort to create novel analogs with 

improved stability and potency [237]. One such effort was initiated by the research 

groups of Drs. Thomas Burke and Dennis Curran that successfully achieved lactone 

stabilization by introducing substituents that promote lipid bilayer partitioning (hence 

protecting the drug from hydrolysis) and minimized albumin binding [16, 17, 222]. 

Several silatecans and homosilatecans were synthesized and tested for their blood 

stability and potency [37, 38, 227, 238]. Among those, AR-67 (7-t-butyldimethylsilyl-10-

hydroxycamptothecin, also known as DB-67, emerged as the most blood stable and 

potent analog and was chosen for further preclinical and clinical development [37, 38, 

74].  

We initiated this phase I trial to determine the maximum tolerated dosage (MTD), and 

describe the dose limiting toxicities (DLT) of intravenous AR-67 administered once daily 
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for 5 days of an every 21 day schedule to adults with refractory and metastatic solid 

tumors. In addition, we evaluated antitumor activity, PK and explored correlations 

between AR-67 exposure and toxicity. 
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9.4 Experimental Design and methods. 

9.4.1 Patient Eligibility. 

Patients (>18 years) with refractory solid malignancies were eligible if their disease was 

metastatic or unresectable and standard curative or palliative measures no longer 

existed or were no longer effective. Other eligibility requirements included Eastern 

Cooperative Group (ECOG) performance status ≤ 2, adequate hematologic (leukocytes 

>3,000/µL, absolute neutrophil count (ANC) > 1,500/µL, platelet count > 100,000/µL), 

hepatic, and renal function.  Objective measurable disease was not required.  No prior 

chemotherapy, molecularly targeted agents or radiation therapy was allowed within 2 

weeks (6 weeks for mitomycin C or nitrosoureas), and no major surgery was allowed 

within 3 weeks; all therapy-related toxicity should have resolved to less than grade 1. 

Prior camptothecin therapy was allowed, but patients with allergic reactions attributed to 

compounds of similar chemical or biologic composition to AR-67 or subjects with prior 

grade 3 or 4 anaphylactic reaction to any product formulated with cremophor (i.e., 

paclitaxel) were excluded.  Patients with known brain metastases that had been treated 

and were clinically stable were eligible for this clinical trial.  Other exclusions included 

subjects with: uncontrolled intercurrent illness that would limit study compliance, HIV 

disease, QTc prolongation over 450 msec, evidence of ongoing and significant 

consumptive coagulopathy, or pregnant or nursing females. 

9.4.2 Study Drug. 

AR-67 was supplied by the NCI (RAID program) in vials that contained 10mg/2mL in 

cremophor ethanol diluent.  After reconstitution with 5% dextrose for injection in non-

PVC bags (0.05 – 0.5 mg/mL), the drug was administered at a constant rate over one 

hour into a free flowing intravenous (iv) line (non-PVC tubing) of 5% dextrose via a 
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standard infusion pump. The drug was given within 4 hours of reconstitution to ensure 

lactone stability.   

9.4.3 Study Treatments and Dose Escalation. 

Since it is established that 25 - 30% of those receiving cremophor-formulated 

compounds will experience grade 3 or 4 allergic infusion reactions [239], all patients 

were premedicated to prevent potential cremophor toxicities as follows: dexamethasone 

20 mg orally (PO), 12 hr prior to the first dose of AR-67 and 30 min prior to each dose on 

days 1-5, ondansetron 8 mg PO, loratidine 10 mg PO, famotidine 20 mg PO, and 

diphenhydramine 25 mg PO. Institutional equivalents were allowed.  Investigators could 

reduce the dose of dexamethasone if no allergic reactions were noted in the previous 

cycle. 

The phase-I starting dose was 1.67 mg/m2/day, iv, daily x 5. The first patient (prostate 

cancer) at dose level 1 developed grade 4 thrombocytopenia and consumptive 

coagulopathy, and his dose was reduced to level -1 (1.2 mg/m2) for safety. Ultimately, 

toxicities were attributed to a disease progression with extensive bone metastasis and 

myelophthisic marrow changes and consumptive coagulopathy. This phase I trial was 

designed to have an accelerated dose escalation followed by a modified Fibonacci 

design when certain parameters were met.  Accordingly, after two subjects developed 

grade 2 toxicity early in the study, the study reverted to a modified Fibonacci design, as 

required by protocol. After 8 more subjects were accrued and demonstrated no grade 2 

or greater toxicities, a secondary accelerated phase design was proposed and approved 

by the IRB in order to expose the minimal number of subjects to potentially sub-

therapeutic dosage levels.  Two dosage level escalations occurred during this secondary 

accelerated phase (at 4.5 mg/m2 and 6.3 mg/m2), with subsequent expansion to a 
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modified Fibonacci design at dosage level 5.5 (7.5 mg/m2).  All dosage levels are 

described in Table 9-1.   
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Table 9-1: Dose – escalation scheme and dose limiting toxicities. 

Dose 
Level Dose daily x 5 n DLT per 

Cohort Type of DLT 

Level -1 1.2 mg/m2/day  2* 0   
Level 1 1.67 mg/m2/day 3 0   
Level 2 2.34 mg/m2/day 3 0   
Level 3 3.2 mg/m2/day 3 0   
Level 4 4.5 mg/m2/day 1 0   
Level 5 6.3 mg/m2/day 1 0   
Level 5.5 7.5 mg/m2/day 7 1/7 Grade 4 thrombocytopenia 
Level 6 8.9 mg/m2/day 4 2/4 Grade 4 thrombocytopenia (2) 
Level 7 12.4 mg/m2/day 2 2/2 Grade 4 febrile neutropenia 

Grade 3 fatigue 
* One subject did not receive 5 days of therapy and was replaced  
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9.4.4 Assessments, Follow-Up, and Monitoring. 

Toxicities were defined using the National Cancer Institute Common Toxicity Criteria 3.0 

(CTCAE 3.0).  The toxicity of a given AR-67 dosage level was considered a dose limiting 

toxicity (DLT) if any of the following were observed during cycle 1:  (1) any Grade 5 

toxicity, (2) ANC < 500/µL for longer than seven days or associated with fever or 

infection of any duration, (3) platelet < 25,000/µL of any duration, (4) grade 3 or 4 non-

hematopoietic toxicity according to the CTCAE version 3.0 with the exception of grade 3 

nausea and/or vomiting, grade 3 diarrhea of less than 3 days after treatment with 

loperamide or grade 3 fever (with or without neutropenia). The recommended phase II 

dose and the MTD were defined as the dosage level below the dosage that induced a 

DLT in two or more patients during cycle 1.  Routine use of colony stimulating factors 

were not permitted during cycle one.  Treatment was resumed once the ANC had 

recovered to ≥ 1,500/µL and a platelet > 100,000/µL (measured within 1 day of 

treatment) and resolution of all non-hematologic toxicity to less than grade 2. If these 

parameters were not met, therapy was delayed for up to 3 weeks for recovery.  AR-67 

dosage reductions by one dosage level were made for any DLT, any grade 4 

neutropenia or thrombocytopenia or grade 3 or 4 non-hematologic toxicity in the 

previous cycle.  A maximum of two dose reductions were allowed per subject and no 

dosage escalations were allowed. In the absence of treatment delays due to adverse 

events, treatment continued until one of the following occurred: disease progression, 

unacceptable adverse event(s), request of patient to withdraw from study, general or 

specific changes in the patient's condition that rendered further treatment unacceptable 

or treatment delay of greater than 3 weeks.  Tumor measurements were performed by 

computer tomography (CT) scan or magnetic resonance imaging (MRI) every two cycles 

of therapy. Disease was assessed according to the response evaluation criteria in solid 

tumors (RECIST v1.0) [240]. Treatment was continued for 6 cycles in the absence of 
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disease progression, provided all toxicities remained acceptable and patients were 

willing to continue on study. 

9.4.5 Pharmacokinetic and Pharmacodynamic Methods. 

Blood was collected from all patients in heparinized tubes at pre-dose, 5 min, 45 min, 65 

min and 1.5, 2, 4, 6, 8, and 24 hrs after the start of infusion on days 1 and 4. Day 4 

samples were collected to determine if repeat dosing of AR-67 would result in drug 

accumulation as previously noted with other 3rd generation lipophilic camptothecin 

analogs [241].  AR-67 lactone and carboxylate concentrations were determined in 

plasma by a validated high-performance liquid chromatography method with 

fluorescence detection based on a previously published assay [137]. Plasma PK 

parameters were estimated by noncompartmental methods with WinNonlin (version5.2; 

Pharsight, Mountain View, CA). Clearance values were compared by the Wilcoxon 

signed rank paired test to assess differences between days 1 and 4. Relationships 

between drug exposure and toxicity were explored using sigmoid E-max and logistic 

regression models (Graph-Pad Prism V5, La Jolla, CA). Spearman correlation was used 

to evaluate relationships between hematologic toxicities and exposure in terms of AUC, 

dosage level, and absolute dose. 
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9.5 Results. 

9.5.1 Patient characteristics. 

Between November 2, 2006 and December 15, 2008, 26 subjects were enrolled and all 

were assessable for toxicity. Patient demographics are listed in Table 9-2. Overall, 61 

courses of AR-67 over 9 dosage levels were delivered. One patient at dose level 1 

received only 2 days of drug administration prior to progressive disease manifested by 

bowel obstruction that required hospitalization, and was removed from study. This 

subject was not evaluable for response, but was evaluable for toxicity. 
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Table 9-2: Patient characteristics. 

Characteristic No of Patients 
(N = 26) 

Median age, years 62 
   Range 30-79 
Performance Status   
   0 13 
   1 12 
   2 1 
Male/Female 15/11 
Median prior chemotherapy 
regimens 3 

   Range (1-6) 
Race   
   Caucasian 25 
   African-American 1 
Tumor types   
   Colon 8 
   Non-Small Cell Lung 4 
   Small Cell Lung 3 
   Soft Tissue Sarcoma 3 
   Head and Neck 2 
   Prostate 2 
   Bladder 1 
   Duodenal 1 
   Esophageal 1 
   Pancreas 1 
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9.5.2 Toxicity. 

Dose limiting toxicities were observed in 5 patients: two of two subjects at 

12.4mg/m2/day (highest dosage level) experienced DLTs; one grade 4 febrile 

neutropenia and one grade 3 fatigue; two of four subjects at 8.9 mg/m2/day exhibited 

grade 4 thrombocytopenia and one of seven subjects at 7.5 mg/m2/day manifested 

grade 4 thrombocytopenia. All DLTs resolved without permanent sequellae. Table 9-3 

summarizes all CTCAE toxicities at least possibly related to AR-67. Common Grade 3 

and 4 toxicities included: leukocytopenia (23%), thrombocytopenia (15.4%), fatigue 

(15.4%), neutropenia (11.5%), and anemia (11.5%). Notably, none of the patients 

experienced infusion related allergic reactions or diarrhea. 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com
185 

 

Table 9-3: CTCAE toxicities possibly, probably or definitely related to AR-67. 

      
  

Grade 
  

  

Category Adverse Event 1 2 3 4 Tot
al 

BLOOD/BONE 
MARROW 

Hemoglobin 8 1
2 

6 0 26 

  Leukocytes (total WBC) 18 1
5 

8 0 41 

  Monocytopenia 0 0 0 1 1 
  Neutrophils/granulocytes 

(ANC/AGC) 
3 1

0 
5 1 19 

  Platelets 13 8 9 7 37 
CARDIAC GENERAL Hypotension 0 1 0 0 1 
CONSTITUTIONAL 
SYMPTOMS 

Fatigue (asthenia, lethargy, 
malaise) 

4 1
4 

8 0 26 

  Fever (in the absence of 
neutropenia) 

0 1 0 0 1 

  Insomnia 2 5 0 0 7 
  Weight loss 2 0 0 0 2 
DERMATOLOGY/SKI
N 

Pruritus/itching/Dry skin/Flushing 7 0 0 0 7 

  Nail changes 1 0 0 0 1 
  Rash/desquamation 2 1 0 0 3 
GASTROINTESTINAL Anorexia/Taste Alteration 4 7 1 0 12 
  Constipation/Dehydration 6 8 0 0 14 
  Mucositis/stomatitis 2 0 0 0 2 
  Nausea 14 0 0 0 14 
HEMORRHAGE/BLEE
DING 

Hemorrhage, GI - Duodenum 0 0 1 0 1 

INFECTION Febrile neutropenia  0 0 1 2 3 
  Infection - ANC grade 0-2 3 4 0 2 9 
  Infection with unknown ANC 2 1 0 0 3 
METABOLIC/LABORA
TORY 

ALT, SGPT, Alkaline Phosphatase 8 0 0 0 8 

  Electrolyte abnormalities 8 0 0 0 8 
Extremity-lower (gait/walking) 1 0 0 0 1 
  Muscle weakness - Lower 

extremity 
0 3 1 0 4 

NEUROLOGY Dizziness 0 1 0 0 1 
  Neuropathy: sensory 1 0 0 0 1 
Dyspnea  1 0 0 0 1 
  Hiccoughs (hiccups, singultus) 2 1 0 0 3 
TOTAL   11

2 
9
2 

40 1
3 

257 
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9.5.3 Efficacy. 

The secondary endpoint of response per RECIST v1.0 was evaluable in 22 subjects. 

One subject with squamous cell carcinoma of the lung received ten cycles of therapy 

and had a prolonged partial response at dosage level 5.5. This response continues as of 

this writing, seven months after cessation of therapy (Figure 9-1). Four subjects had 

stable disease: one patient at dosage level 7 with duodenal cancer (82 days), two 

patients at dosage levels 5.5 and 6 with small cell lung cancer (refractory disease, 91 

days; sensitive relapse, 112 days) and one patient with non small cell lung cancer at 

dose level 5.5 (74 days).  
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Figure 9-1: Antitumor efficacy of AR-67.  

(A) Best response of target lesions measured by using Response Evaluation 
Criteria in Solid Tumors (best response does not include longest dimensions of 
new lesions). (B) Reduction in tumor burden in a patient with recurrent non-small 
cell lung cancer who received 10 cycles of AR67 therapy (7.5 mg/m2/day for 4 
cycles, 6.3 mg/m2/day for 5 cycles and 4.5 mg/m2/day for 1 cycle). The patient 
achieved partial response at the end of cycle 4, which was maintained as of this 
writing (7 months after the end of cycle 10). 
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9.5.4 Pharmacokinetics. 

This compound was designed to promote lactone stability in-vivo with the presumption 

that high lactone stability would lead to improved efficacy. Our results demonstrate that 

in human plasma the AR-67 lactone form accounts for 87.5% (±8.5%, SD) of the total 

AR-67 AUC (lactone + carboxylate). Summary PK parameters of total AR-67 at each 

dosage level and lactone AUCs are presented in Table 9-4 and Table 9-5. Mean plasma 

concentrations for the MTD cohort are presented in Figure 9-2A. The drug is eliminated 

with a bi-exponential profile and there is no evidence of accumulation on day 4. Greater 

than 80% of the total concentration is in the lactone form (Figure 9-2B) at each time 

point. The values of the lactone and total AUC (Figure 9-2C) were highly correlated 

(Spearman correlation: r=0.99, p<0.0001 and r=0.99, p<0.0001 for day 1 and 4, 

respectively). Given this strong correlation and the high lactone to total AR-67 ratio, 

further analysis was done based on the total AR-67 concentrations. Linear regression 

and correlation analysis demonstrated that the increase in Cmax (data not shown) and 

AUC were dose dependent, while clearance was constant. As shown in Figure 9-2D no 

correlation was observed between dosage and clearance suggesting that clearance was 

constant across dosage levels. However, the mean clearance of total AR-67 increased 

20% (p=0.0031, Wilcoxon signed rank two-tailed t-test) from day 1 (14.5 ±4.1L/hr/m2, 

N=26)) 

to day 4 (17.4 ±5.2 L/hr/m2, SD, N=25). It should be noted that the non-compartmental 

analysis may slightly overestimate the clearance since the true Cmax may not have been 

captured by the 45-minute sample, which was collected during the infusion.  
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Table 9-4: Total AR-67 pharmacokinetic parameters on day 1 of cycle 1. 

 Dosage 
Level Total   AUC(0-∞) 

Lactone 
AUC(0-∞) 

Cmax, total
# Vss, total T(1/2)total

* Clearance total 

Day (mg/m2) (ng x hr/mL) (ng x hr/mL) (ng/mL) (L/m2) (hr) (L/hr/m2) 

  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1 1.2   (n=2) 88 11 81 8 77.6 2.9 7.4 2.2   13.8 1.8 
 1.67 (n=3) 128 19 117 21 96.9 20.1 13.1 4   13.2 2 
 2.34 (n=3) 201 118 186 110 158.9 97.3 13.5 6.9   14.1 6.3 
 3.23 (n=3) 290 72 269 64 221.9 55.9 9.6 0.7   11.6 3 
 4.5   (n=1) 214  179  117.8  32.7    21  
 6.3   (n=1) 490  334  168.5  51.6    12.9  
 7.5   (n=7) 581 82 498 66 349.7 114 18.7 7.3 1.4 0.3 13.1 1.8 
 8.9   (n=4) 502 158 471 270 290.6 153.5 30.1 9.6 1.6 0.2 18.9 5.1 
 12.4   (n=2) 786 64 686 77 464.7 105.4 18.1 3.8 1.1 0.1 15.8 1.3 
              
 All dosage levels        1.4 0.1 14.5 4.1 

Abbreviations: AUC area under the plasma concentration-time curve; SD, standard deviation; Vss, volume of distribution at 
steady-state. 
*Half-life estimates are reported for dosage levels at which estimation of terminal slopes could be obtained by at least 3 data 
points in the elimination phase.  
#Cmax values are the observed values at 45 minutes during the 1-hr infusion. 
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Table 9-5: Total AR-67 pharmacokinetic parameters day 4 of cycle 1. 

 Dosage 
Level 

Total   AUC(0-

∞) 
Lactone 
AUC(0-∞) 

Cmax, total
# Vss, total T(1/2)total

* Clearance total 

Day (mg/m2) (ng x hr/mL) (ng x hr/mL) (ng/mL) (L/m2) (hr) (L/hr/m2) 

  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

4 1.2   (n=1) 51  49  51.6  15.6    23.6  
 1.67 (n=3) 115 57 109 58 74.6 11.3 16.3 4.4   16.7 6.5 
 2.34 (n=3) 154 10 137 9 137.8 6.1 7.9 3.4   15.3 1 
 3.23 (n=3) 255 70 236 61 195 58.8 10.6 4.3   13.3 3.5 
 4.5   (n=1) 186  149  82.5  45.3    24.2  
 6.3   (n=1) 429  327  166.4  35.3    14.7  

 7.5   (n=7) 478 127 411 104 308.6 122.9 25.6 16.
3 1.8 0.7 16.8 5 

 8.9   (n=4) 507 145 397 119 276.7 69.5 27.5 6.7 1.4 0 18.6 4.9 
 12.4   (n=2) 663 216 551 146 358.5 77.5 28.9 5.4 1.7 0.1 19.8 6.5 
              
 All dosage levels        1.6 0.4 17.4 5.2 

Abbreviations: AUC area under the plasma concentration-time curve; SD, standard deviation; Vss, volume of distribution at 
steady-state. 
*Half-life estimates are reported for dosage levels at which estimation of terminal slopes could be obtained by at least 3 data 
points in the elimination phase.  
#Cmax values are the observed values at 45 minutes during the 1-hr infusion. 
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Figure 9-2: Pharmacokinetic analysis.  

(A) Mean plasma concentration-time profiles of total AR-67 in the MTD cohort 
(n=7). (B) The mean percent lactone in plasma at each time point for all patients. 
(C) Correlation plot of total and lactone AUC. (D) Relationship of administered AR-
67 dosage with clearance. Solid lines in panels C and D represent linear 
regression lines. 
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9.5.5 Pharmacodynamics. 

Given the high correlation and low variability in the lactone to total AR-67 ratio in all 

subjects, we used the total AR-67 PK parameters to explore relationship between 

exposure and toxicity.  Total AR-67 exposure and the observed hematologic DLTs were 

examined using a sigmoid E-max model (Equation 1). Where E(d) is the effect as a 

function of AUC or dosage, H is the curve shape factor (i.e., Hill coefficient), and ED50 is 

the AUC or dosage at which 50% of the effect is observed. 

 

 

 

Equation 1 

 

Figure 9-3 depicts the relationship between dosage level (panel A) or AUC (panel B) and 

the % decrease in ANC and platelets from baseline. The dosage level ED50 (95% CI) of 

6.1 (4.3 – 8.7), and 4.9 (3.2 – 7.6) mg/m2 were estimated for the % decrease in ANC and 

platelets, respectively.  The estimated AUC ED50 (95% CI) values were 323.6 (231.9 - 

451.6) and 364.2 (249.4 - 531.9) hr*ng/mL for ANC and platelets, respectively.  

 To determine the probability for the occurrence of each toxicity during cycle 1, we 

performed logistic regression (Equation 2), where P is the probability, X (values of 1 or 

0) denotes the presence or absence, respectively, of toxicity determined by a nadir value 

below the respective lower limit set for ANC (<1500/mm3) and platelets (<100,000/mm3), 

and α and β are model parameters (α representing the log-odds of toxicity occurrence 

when X=0 and β is the increment in the log-odds of toxicity when X=1. Furthermore, the 

H

H

dED
dEdE
+
⋅

=
50

max)(
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parameter β describes the steepness of the s-shaped curved or the rate of change in 

probability with increasing drug exposure.  

 
 

Equation 2 

 

As depicted in Figure 9-3 (panel C), during cycle 1 the occurrence of neutropenia was 

more likely than thrombocytopenia at exposures resulting from the MTD dosage level. 

Strong correlations could also be demonstrated between exposure and nadir values of 

ANC and platelets (Figure 9-4). This analysis demonstrates that the correlations were 

similar when considering exposure in terms of AUC and dosage level (mg/m2). Similar 

correlations were also observed with leucopenia and the probability for observing 

leucopenia was similar to that for neutropenia (data not shown). At the MTD level ANC 

and platelet nadir levels were observed on days 10-14 during cycle 1 but patients 

recovered prior to day 22 (day 1 of cycle 2). 

  

)(exp1
1

XP
⋅+−+

= βα
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Figure 9-3: Pharmacodynamic analysis of neutropenia and thrombocytopenia 
during cycle 1 in all patients.  

Percent decrease from baseline as a result of (A) increasing dosage level and (B) 
AUC (day 1 of cycle 1). Lines represent fit of a sigmoid Emax model to the data. 
(C) Logistic regression analysis demonstrating the probabilities of manifesting 
neutropenia and thrombocytopenia with increasing AR-67 exposure. The gray 
area encompasses the range of AR-67 AUC achieved at the MTD during day 1 of 
cycle 1. 
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Figure 9-4: AR-67 exposure – toxicity relationships. 

Increased drug exposure determined by AUC (day 1 of cycle 1) and dosage level 
correlated with neutrophil (A, C) and platelet (B, D) nadir values (cycle 1).  
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9.6 Discussion. 

AR-67 administered daily for five days of an every 21-day cycle was well tolerated in this 

study.  DLTs were thrombocytopenia, febrile neutropenia and fatigue and the MTD was 

defined as 7.5 mg/m2/day.  Notably, no diarrhea or allergic infusional reactions occurred 

in the 26 people exposed to this compound.  At the recommended phase II dose of 7.5 

mg/m2/day (n=7), the regimen produced only modest and manageable side effects.  

While fatigue and hematologic toxicities are hallmarks of camptothecins, the lack of 

diarrhea seen in the present trial is notable compared to other drugs of this class, 

particularly irinotecan. Interestingly, although AR-67 is lipophilic and shares some 

structural characteristics with the active metabolite of irinotecan (i.e., SN-38), it does not 

undergo UGT1A1 mediated glucuronidation, but is extensively metabolized by UGT1A8, 

which is primarily expressed in the gastrointestinal tract [242, 243]. This may partly 

explain the lack of diarrhea observed in this study. Complete studies related to the 

metabolism and transport pathways of this compound are underway and will be 

presented elsewhere. 

Pharmacokinetic studies demonstrated that 87.5% (±8.5%) of the drug is in the lactone 

form. This represents a significant improvement in effective drug delivery from other 

clinically approved camptothecins with reported lactone AUC ratios of 30~76% for 

irinotecan and irinotecan derived SN-38 [54, 225, 226] and for topotecan [42]. With 

respect to 3rd generation analogs, the AR-67 lactone ratio is lower than the reported 

values for gimatecan and karenitecin, both in early clinical trials, which exist in plasma 

as 90-98% [229, 241] and ~90-95% [244, 245]  in the lactone form, respectively [229, 

244, 245]. However, the AR-67 elimination half-life (~1.4 hr) may explain the lack of 

accumulation observed with gimatecan and karenitecin, which have documented half-

lives of 77 hr and 15 hr, respectively.  Interestingly, despite their long half-lives, these 
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analogs have not proven more effective than the clinically approved camptothecins, 

which exhibit shorter half-lives. Thus, the prolonged exposures required for efficacy in 

rapidly growing preclinical models are not necessarily important for improved clinical 

efficacy.  

AR-67 clearance is linear and correlates with hematologic toxicity. Interestingly, AR-67 

clearance increased on day 4 of cycle 1 suggesting that this may be due to 

dexamethasone co-treatment inducing CYP3A4 activity. This is consistent with our in-

vitro data demonstrating that AR-67 is a substrate for CYP3A4 and with previous clinical 

evidence demonstrating that dexamethasone treatment for 5 days induces CYP3A4 

activity [193, 242].  However, CYP3A4 induction was highly variable in that study [193] 

as compared to our data that demonstrates a consistent ~20% decrease in AUC 

between days 1 and 4 in all patients. Thus, it is possible that the drug is also inducing its 

own metabolism to some extent.  

The use of the cremophor-ethanol excipient is known to be associated with 

hypersensitivity reactions and has the potential to cause non-linear pharmacokinetics 

[239, 246]. However, the amount of cremophor at the MTD is less that 4% of that 

administered to a patient receiving a typical paclitaxel dose of 200 mg/m2 and no 

patients exhibited hypersensitivity reactions. Nonetheless, patients treated in upcoming 

Phase II studies will continue to receive prophylactic premedication to prevent potential 

hypersensitivity reactions. 

 The partial response seen in NSCLC is notable because of the rapid tumor 

regression demonstrated by CT scan (Figure 9-1). This subject continued to benefit, 

despite two dose reductions for a total of 10 cycles, and ultimately stopped treatment 

due to grade 3 fatigue.  The partial response was ongoing seven months after cessation 
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of therapy. In addition, stable disease was noted in two patients with SCLC (refractory 

and sensitive relapse for over three months) and one patient each with NSCLC and 

duodenal cancer.  Camptothecins as a class have been proven effective in each of these 

cancer types, and further exploration of AR-67 in these groups is warranted [237]. 

 In conclusion, AR-67 given daily for 5 days in an every-21-day cycle is well 

tolerated, with acceptable myelosuppression and fatigue as DLTs.  At the MTD, toxicities 

were manageable and no diarrhea or hypersensitivity reactions were seen. Critically 

important was the demonstration of high lactone stability (~87.5% of total AR-67) in 

human plasma. Interestingly, a confirmed partial response was noted in a patient with 

non-small cell lung cancer, who remained on therapy for ten cycles.  We also 

demonstrated linear PK and correlation of AUC and dosage with toxicity.  Further clinical 

testing of AR-67 is warranted and ongoing. 
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